Scientists simulate a black hole in a water tank

February 7, 2019 by José Tadeu Arantes, FAPESP
Scientists simulate a black hole in a water tank
A Brazilian researcher participated in the study, which reproduced the oscillation patterns of gravitational waves and has been published in Physical Review Letters. Credit: Maurício Richartz

Certain phenomena that occur in black holes but cannot be directly observed in astronomic investigations can be studied by means of a laboratory simulation. This is possible due to a peculiar analogy between processes that are characteristic of black holes and hydrodynamic processes. The common denominator is the similarity of wave propagation in both cases.

This possibility is explored in a new article published in Physical Review Letters. Physicist Maurício Richartz, a professor at the Federal University of the ABC (UFABC) in Brazil, is one of the authors of the article, produced by Silke Weinfurtner's group at the University of Nottingham's School of Mathematical Sciences in the UK. The research was supported by FAPESP via the Thematic Project "Physics and geometry of spacetime," for which Alberto Vazquez Saa is the principal investigator.

"While this study is entirely theoretical, we've also performed experimental simulations at Weinfurtner's lab," Richartz told Agência FAPESP. "The apparatus consists basically of a large water tank measuring 3 meters by 1.5 meter. The water flows out through a central drain and is pumped back in, so that the system reaches a point of equilibrium in which the quantity of inflow is equal to the quantity of outflow. We simulate a black hole in this way."

He provided further details to explain how this was done. "The speeds up as it approaches the drain. When we produce on the surface of the water, we obtain two important velocities: the velocity of wave propagation and the velocity of the overall water flow," he said.

"Far from the drain, wave velocity is much higher than fluid velocity, so waves can propagate in any direction. The situation is different near the drain, however. Fluid velocity is much higher than wave velocity, so the waves are dragged down by the water flow even when they're propagating in the opposite direction. This is how a black hole can be simulated in the lab."

In a real astrophysical black hole, its gravitational attraction captures matter and prevents waves of any kind from escaping, including light waves. In the hydrodynamic simulacrum, the waves on the surface of the fluid cannot escape from the vortex that forms.

In 1981, Canadian physicist William Unruh discovered that the similarity between the two processes – a black hole and a hydrodynamic simulacrum – was more than a mere analogy. With a few simplifications, the equations that describe the propagation of a wave in the vicinity of a black hole are identical to those that describe the propagation of a wave in water flowing down a drain.

This legitimizes the use of hydrodynamic processes to investigate the phenomena typical of . In the new study, Richartz and collaborators analyzed the relaxation (ringdown) process in a hydrodynamic simulacrum of an out-of-equilibrium black hole, taking previously ignored factors into account. In some respects, the phenomenon they studied is similar to the ringdown process in an actual astrophysical black hole that generates gravitational waves after being created by a collision with two other black holes.

Scientists simulate a black hole in a water tank
Representation of a wave forming on the water surface. The large figure marked “sum” represents the complete wave (i.e., its quasi-normal and quasi-bound states) at a given instant. The smaller figures represent some specific modes within the wave. Credit: FAPESP
"A careful analysis of the ringdown spectrum reveals the properties of the black hole, such as its angular momentum and mass. In more complex gravitational systems, the spectrum might depend on more parameters […]", the authors write in the article published in Physical Review Letters.


Vorticity is overlooked by the simplest models but is considered in this study. It is a key concept in fluid mechanics that quantifies the rotation of specific regions of a moving fluid.

If the vorticity is null, the region simply accompanies the motion of the fluid. However, if the vorticity is not null, in addition to accompanying the flow, it also spins around its own center of mass.

"In the simpler models, it's generally assumed that the vorticity of the fluid is equal to zero. This is a good approximation for regions of the fluid located at a distance from the vortex. For regions near the drain, however, it isn't such a good approximation because in this case vorticity becomes increasingly important. So one of the things we did in our study was incorporate vorticity," Richartz said.

The researchers set out to understand how vorticity influences wave damping during propagation. When a real black hole is disturbed, it generates gravitational waves that oscillate at a certain frequency. Their amplitude decreases exponentially over time. The set of damped resonances that describes how the excited system is driven back to equilibrium is characterized technically by a spectrum of quasi-normal modes of oscillation.

"In our study, we investigated how vorticity influenced quasi-normal modes in the hydrodynamic black hole analogue. Our main finding was that some oscillations decayed very slowly, or in other words remained active for a long time, and were located spatially in the vicinity of the drain. These oscillations were no longer quasi-normal modes, but a different pattern known as quasi-bound states," Richartz said.

A future development of the research will entail producing these quasi-bound states experimentally in the laboratory.

Explore further: Vorticity regulates waves in fluids

More information: Sam Patrick et al. Black Hole Quasibound States from a Draining Bathtub Vortex Flow, Physical Review Letters (2018). DOI: 10.1103/PhysRevLett.121.061101

Black hole quasibound states from a draining bathtub vortex flow

Related Stories

Vorticity regulates waves in fluids

June 11, 2018

A study by Politecnico di Torino published in the journal Physical Review E demonstrates that a wave in a fluid requires amplified vorticity and not only amplified energy in order to change the nature of the flow

Scientists make waves with black hole research

June 14, 2017

Scientists at the University of Nottingham have made a significant leap forward in understanding the workings of one of the mysteries of the universe. They have successfully simulated the conditions around black holes using ...

Shocks in the early universe could be detectable today

October 27, 2016

(—Physicists have discovered a surprising consequence of a widely supported model of the early universe: according to the model, tiny cosmological perturbations produced shocks in the radiation fluid just a fraction ...

Recommended for you

Physicists reveal why matter dominates universe

March 21, 2019

Physicists in the College of Arts and Sciences at Syracuse University have confirmed that matter and antimatter decay differently for elementary particles containing charmed quarks.

ATLAS experiment observes light scattering off light

March 20, 2019

Light-by-light scattering is a very rare phenomenon in which two photons interact, producing another pair of photons. This process was among the earliest predictions of quantum electrodynamics (QED), the quantum theory of ...

How heavy elements come about in the universe

March 19, 2019

Heavy elements are produced during stellar explosion or on the surfaces of neutron stars through the capture of hydrogen nuclei (protons). This occurs at extremely high temperatures, but at relatively low energies. An international ...

Trembling aspen leaves could save future Mars rovers

March 18, 2019

Researchers at the University of Warwick have been inspired by the unique movement of trembling aspen leaves, to devise an energy harvesting mechanism that could power weather sensors in hostile environments and could even ...


Adjust slider to filter visible comments by rank

Display comments: newest first

2.3 / 5 (3) Feb 08, 2019
"While this study is entirely theoretical, we've also performed experimental simulations at Weinfurtner's lab," Richartz told Agência FAPESP. "The apparatus consists basically of a large water tank measuring 3 meters by 1.5 meter. The water flows out through a central drain and is pumped back in, so that the system reaches a point of equilibrium in which the quantity of inflow is equal to the quantity of outflow. We simulate a black hole in this way."

Quite some time before the April Fool's Day. I know, the editor was lenient, and the manuscript got published early.
1 / 5 (1) Feb 08, 2019
Congratulations - you have invented a simple analog computer
3.4 / 5 (8) Feb 08, 2019
I simulate a BH every morning, gravity waves and all. If the matter doesn't fall down past the event horizon I then must rely on my Rip Thorne gravity inducing plunger. Fortunately, for my house cleaner, I have yet to produce any BH jets.
1 / 5 (1) Feb 09, 2019
The infantry men are standing around. nodding their heads.
A Black Holes in a tank?
"Terrific! Another way to kill those fuckers,"

The points I take away from this article are...
This article needs to clarify the differences between dominant gravity waves & weak-ass EM waves?
That could just be a translation glitch?
Or, possibly I failed to understand "how" the researchers are explaining the observed phenomena?

& whether or not the terms for the vortex phenomena should be "same" or "similar"?

A similar process is not necessarily the same process.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.