How predatory plankton created modern ecosystems after 'Snowball Earth'

February 1, 2019, Max Planck Society
Discovery site of fossil fats: Max Planck researchers found 635 million year-old molecules in rock samples from the Grand Canyon, most likely from predatory plankton. The microorganisms probably prepared the soil for today's ecosystems after the earth thawed again after a phase of complete glaciation. Credit: laurasaman/unsplah

Around 635 to 720 million years ago, during Earth's most severe glacial period, the Earth was twice almost completely covered by ice, according to current hypotheses. The question of how life survived these "Snowball Earth' glaciations, lasting up to about 50 million years, has occupied the most eminent scientists for many decades. An international team, led by Dutch and German researchers of the Max Planck Society, now found the first detailed glimpse of life after the "Snowball' in the form of newly discovered ancient molecules, buried in old rocks.

"All higher animal life forms, including us humans, produce cholesterol. Algae and bacteria produce their own characteristic fat molecules." says first author Lennart van Maldegem from Max Planck Institute (MPI) for Biogeochemistry, who recently moved to the Australian National University in Canberra, Australia. "Such fat molecules can survive in rocks for millions of years, as the oldest (chemical) remnants of organisms, and tell us now what type of life thrived in the former oceans long ago."

But the fossil fats the researchers recently discovered in Brazilian rocks, deposited just after the last Snowball glaciation, were not what they suspected. "Absolutely not," says team-leader Christian Hallmann from MPI for Biogeochemistry, 'we were completely puzzled, because these molecules looked quite different from what we've ever seen before!" Using sophisticated separation techniques, the team managed to purify minuscule amounts of the mysterious molecule and identify its structure by in the NMR department of Christian Griesinger at Max Planck Institute for Biophysical Chemistry. "This is highly remarkable itself' according to Klaus Wolkenstein from MPI for Biophysical Chemistry and the Geoscience Centre of the University of Göttingen: "Never has a structure been elucidated with such a small amount of such an old molecule." The structure was chemically identified as 25,28-bisnorgammacerane—abbreviated as BNG as van Maldegem suggests.

Fossil fats most likely from heterotropic plankton

Yet the origin of the compound remained enigmatic. "We of course looked if we could find it elsewhere' says van Maldegem, who then studied hundreds of ancient samples, with rather surprising success. "In particular the Grand Canyon rocks really were an eye-opener' says Hallmann. Although nowadays mostly sweltering hot, these rocks had also been buried under kilometres of glacial ice around 700 million years ago.

Detailed additional analyses of in Grand Canyon rocks—including presumed BNG-precursors, the distribution of steroids and stable carbon isotopic patterns—led the authors to conclude that the new BNG molecule most likely derives from heterotrophic plankton, marine microbes that rely on consuming other organisms for gaining energy. "Unlike for example that engage in photosynthesis and thus belong to autotrophic organisms, these heterotrophic microorganisms were true predators that gained energy by hunting and devouring other algae and bacteria' according to van Maldegem.

Predatory species create room for algae and other plankton

While predation is common amongst plankton in modern oceans, the discovery that it was so prominent 635 million years ago, exactly after the Snowball Earth glaciation, is a big deal for the science community. "Parallel to the occurrence of the enigmatic BNG molecule we observe the transition from a world whose oceans contained virtually only bacteria, to a more modern Earth system containing many more algae. We think that massive predation helped to 'clear' out the bacteria-dominated oceans and make space for algae' says van Maldegem.

The resulting more complex feeding networks provided the dietary requirements for larger, more intricate lifeforms to evolve—including the lineages that all animals, and eventually we humans, derive from. The massive onset of predation probably played a crucial role in the transformation of our planet and its ecosystems to its present state.

Explore further: Study solves mystery of how first animals appeared on Earth

More information: Lennart M. van Maldegem et al. Bisnorgammacerane traces predatory pressure and the persistent rise of algal ecosystems after Snowball Earth, Nature Communications (2019). DOI: 10.1038/s41467-019-08306-x

Related Stories

Scientists discover the world's oldest colors

July 9, 2018

Scientists from The Australian National University (ANU) and overseas have discovered the oldest colours in the geological record, 1.1 billion-year-old bright pink pigments extracted from rocks deep beneath the Sahara desert ...

Fat from 558 million years ago reveals earliest known animal

September 20, 2018

Scientists from The Australian National University (ANU) and overseas have discovered molecules of fat in an ancient fossil to reveal the earliest confirmed animal in the geological record that lived on Earth 558 million ...

Research shows how life might have survived 'snowball Earth'

October 11, 2011

Global glaciation likely put a chill on life on Earth hundreds of millions of years ago, but new research indicates that simple life in the form of photosynthetic algae could have survived in a narrow body of water with characteristics ...

Recommended for you

Archaeologists discover Incan tomb in Peru

February 16, 2019

Peruvian archaeologists discovered an Incan tomb in the north of the country where an elite member of the pre-Columbian empire was buried, one of the investigators announced Friday.

Where is the universe hiding its missing mass?

February 15, 2019

Astronomers have spent decades looking for something that sounds like it would be hard to miss: about a third of the "normal" matter in the Universe. New results from NASA's Chandra X-ray Observatory may have helped them ...

What rising seas mean for local economies

February 15, 2019

Impacts from climate change are not always easy to see. But for many local businesses in coastal communities across the United States, the evidence is right outside their doors—or in their parking lots.

The friendly extortioner takes it all

February 15, 2019

Cooperating with other people makes many things easier. However, competition is also a characteristic aspect of our society. In their struggle for contracts and positions, people have to be more successful than their competitors ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.