Scientists reconstruct ancient lost plates under Andes mountains

January 23, 2019, University of Houston
University of Houston researchers John Suppe, left, Jonny Wu and Yi-Wei Chen have reconstructed the ancient plates under the Andes Mountains. Credit: University of Houston

The Andes Mountains are the longest continuous mountain range in the world, stretching about 7,000 kilometers, or 4,300 miles, along the western coast of South America.

The Andean margin, where two tectonic plates meet, has long been considered the textbook example of a steady, continuous subduction event, where one plate slipped under another, eventually forming the mountain range seen today.

In a paper published in the journal Nature, geologists from the University of Houston demonstrate the reconstruction of the subduction of the Nazca Ocean plate, the remnants of which are currently found down to 1,500 kilometers, or about 900 miles, below the Earth's surface.

Their results show that the formation of the Andean mountain range was more complicated than previous models suggested.

"The Andes Mountain formation has long been a paradigm of plate tectonics," said Jonny Wu, assistant professor of geology at UH and a co-author of the paper.

When move under the Earth's crust and enter the mantle, they do not disappear. Rather, they sink toward the core, like leaves sinking to the bottom of a lake. As these plates sink, they retain some of their shape, offering glimpses of what the Earth's surface looked like millions of years ago.

These plate remnants can be imaged, similar to the way CT scans allow doctors to see inside of a patient, using data gleaned from earthquake waves.

"We have attempted to go back in time with more accuracy than anyone has ever done before. This has resulted in more detail than previously thought possible," Wu said. "We've managed to go back to the age of the dinosaurs."

Nazca Plate Subduction

The paper describes the deepest and oldest plate remnants reconstructed to date, with plates dating back to the Cretaceous Period.

"We found indications that when the slab reached the , it created signals on the surface," said Yi-Wei Chen, a Ph.D. geology student in the UH College of Natural Sciences and Mathematics and first author on the paper. A transition zone is a discontinuous layer in the Earth's mantle, one which, when a sinking plate hits it, slows the plate's movement, causing a build-up above it.

In addition to Wu and Chen, John Suppe, Distinguished Professor of Earth and Atmospheric Sciences at UH, is a co-author on the paper.

The researchers also found evidence for the idea that, instead of a steady, continuous subduction, at times the Nazca plate was torn away from the Andean margin, which led to volcanic activity. To confirm this, they modeled along the Andean margin.

"We were able to test this model by looking at the pattern of over 14,000 volcanic records along the Andes," Wu said.

The work was conducted as part of the UH Center for Tectonics and Tomography, which is directed by Suppe.

"The Center for Tectonics and Tomography brings together experts from different fields in order to relate tomography, which is the imaging of the Earth's interior from seismology, to the study of tectonics," Wu said. "For example, the same techniques we use to explore for these lost plates are adapted from petroleum exploration techniques."

Explore further: The origin of the Andes unravelled

More information: Southward propagation of Nazca subduction along the Andes, Nature (2019). DOI: 10.1038/s41586-018-0860-1 , www.nature.com/articles/s41586-018-0860-1

Related Stories

The origin of the Andes unravelled

December 11, 2017

Why do the Andes exist? Why is it not a place of lowlands or narrow seas? Wouter Schellart, a geophysicist at the Vrije Universiteit Amsterdam, has been pondering these questions for more than a decade. Now, he has found ...

New timeline proposed for plate tectonics

May 11, 2017

Earth's history should include 'pre-plate tectonic' and 'plate tectonic' phases beginning less than a billion years ago, according to a team of geoscientists in the journal Geology.

Earth's past gives clues to future changes

November 24, 2011

(PhysOrg.com) -- Scientists are a step closer to predicting when and where earthquakes will occur after taking a fresh look at the formation of the Andes, which began 45 million years ago.

Recommended for you

Archaeologists discover Incan tomb in Peru

February 16, 2019

Peruvian archaeologists discovered an Incan tomb in the north of the country where an elite member of the pre-Columbian empire was buried, one of the investigators announced Friday.

Where is the universe hiding its missing mass?

February 15, 2019

Astronomers have spent decades looking for something that sounds like it would be hard to miss: about a third of the "normal" matter in the Universe. New results from NASA's Chandra X-ray Observatory may have helped them ...

What rising seas mean for local economies

February 15, 2019

Impacts from climate change are not always easy to see. But for many local businesses in coastal communities across the United States, the evidence is right outside their doors—or in their parking lots.

The friendly extortioner takes it all

February 15, 2019

Cooperating with other people makes many things easier. However, competition is also a characteristic aspect of our society. In their struggle for contracts and positions, people have to be more successful than their competitors ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

Nik_2213
not rated yet Jan 23, 2019
paywalled, no arxiv apparent...

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.