The disintegrating exoplanet K2-22b

January 21, 2019, Harvard-Smithsonian Center for Astrophysics
The disintegrating exoplanet K2-22b
An artist's conception of K2-22b, an exoplanet slightly smaller in size than Neptune. Observations suggest that this exoplanet is in disintegrating, and has debris in a trailing and leading dust tails. Credit: NASA

Exoplanet surveys have yielded many surprises over the years, and the discovery of "disintegrating" exoplanets was one of them. These are planets that produce asymmetric shapes in the dips of the light curves seen as they transit across the faces of their stars. The asymmetry is hypothesized to be due to tails of dusty material from the planets' disintegration. At present, only three such planets known around main sequence stars, one being K2-22b. There are currently over 3800 confirmed exoplanets, suggesting either that such objects are intrinsically rare or that they have very short lifetimes, in which case it is lucky to catch any in the act of disintegration. These systems have been under intense study to better understand their formation and evolution and to constrain the properties of the grains in the dust tails.

CfA astronomers George Zhou, Karen Collins, Allyson Bieryla, and Dave Latham were members of a team that obtained forty-five ground-based observations of the K2-22 system in their study of the evolution of its . K2-22b is a Neptune-sized that orbits its star in only about nine hours; it is unusual in that it appears to have not only a trailing dust tail but a leading trail as well. The team's observations of the dust tails included observing the transits at multiple wavelengths to try to use color to characterize the dust grain size or composition, but except in one transit event no differences were seen. The color information is, however, consistent with the previous model of dust grains as being small—comparable to or smaller than optical light wavelengths.

The astronomers also confirmed the variability of the transits, thought to be evidence of the continuing rapid evolution of the dust tails. The scientists point out that this variability appears in all three disintegrating , and the shape variability occurs on all the timescales observed, from transit to transit and over several years. They conclude that a continuous observing campaign would be a in unraveling the mystery of these dusty trails.

Explore further: MuSCAT2 to find Earth-like planets in the TESS era

More information: Knicole D. Colón et al. A Large Ground-based Observing Campaign of the Disintegrating Planet K2-22b, The Astronomical Journal (2018). DOI: 10.3847/1538-3881/aae31b

Related Stories

MuSCAT2 to find Earth-like planets in the TESS era

December 18, 2018

A Japan-Spain team has developed a powerful 4-color simultaneous camera named MuSCAT2 for the 1.52-m Telescopio Carlos Sánchez at the Teide Observatory, Canaries, Spain. The instrument aims to find a large number of transiting ...

A stellar system with three super-Earths

March 2, 2018

Over 3500 extra-solar planets have been confirmed to date. Most of them were discovered using the transit method, and astronomers can combine the transit light curves with velocity wobble observations to determine the planet's ...

Dust production in evolved exoplanetary systems

November 5, 2018

Stellar variability has long offered insights into stars' physical properties. The star Mira (Omicron Ceti), for example, was so-named in 1596 by Dutch astronomers who were amazed by its miraculous brightening because of ...

A new neptune-size exoplanet

December 16, 2018

The remarkable exoplanet discoveries made by the Kepler and K2 missions have enabled astronomers to begin to piece together the history of the Earth and to understand how and why it differs from its diverse exoplanetary cousins. ...

Rings and gaps in a developing planetary system

April 2, 2018

The discovery of an exoplanet has most often resulted from the monitoring of a star's flicker (the transiting method) or its wobble (the radial velocity method). Discovery by direct imaging is rare because it is so difficult ...

A hot Jupiter around a sun-like star

November 18, 2015

There are almost 1800 confirmed exoplanets known today, and over 4000 exoplanet candidates. Astronomers have obtained estimates for the masses and radii (and hence the average densities) of over four hundred of these confirmed ...

Recommended for you


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.