CubeSats joining Hera mission to asteroid system

January 7, 2019, European Space Agency
ESA’s Hera mission concept, currently under study, would be humanity’s first mission to a binary asteroid: the 800 m-diameter Didymos is accompanied by a 170 m-diameter secondary body. Hera will study the aftermath of the impact caused by the NASA spacecraft DART on the smaller body. Credit: ESA–ScienceOffice.org

When ESA's planned Hera mission journeys to its target binary asteroid system, it will not be alone. The spacecraft will carry two tiny CubeSats for deployment around – and eventual landing on – the Didymos asteroids. Each companion spacecraft will be small enough to fit inside a briefcase, as compared to the desk-sized Hera.

CubeSats are nanosatellites based on standardised 10 cm-sized units. Hera has room to deliver two 'six-unit' CubeSat missions to the Didymos asteroid system – a 780 m-diameter mountain-sized main body is orbited by a 160 m moon, informally called 'Didymoon', about the same size as the Great Pyramid of Giza.

The Hera mission received proposals for CubeSats from across Europe, and an evaluation board has now made the final selection.

"We're very happy to have these high-quality CubeSat missions join us to perform additional bonus science alongside their Hera mothership," explains Hera manager Ian Carnelli.

"Carrying added instruments and venturing much closer to our target bodies, they will give different perspectives and complementary investigations on this exotic binary asteroid. They will also give us valuable experience of close proximity operations relayed by the Hera mothercraft in extreme low-gravity conditions. This will be very valuable to many future missions."

Paolo Martino, Hera spacecraft lead engineer adds: "The idea of building CubeSats for deep space is relatively new, but was recently validated by NASA's InSight landing on Mars last November, when a pair of accompanying CubeSats succeeded in relaying the lander's radio signals back to Earth – as well as returning imagery of the Red Planet."

APEX CubeSat. Credit: Swedish Institute of Space Physics

The first CubeSat companion is called the Asteroid Prospection Explorer (or 'APEX'), and was developed by a Swedish/Finnish/Czech/German consortium. It will perform detailed spectral measurements of both asteroids' surfaces – measuring the sunlight reflected by Didymos and breaking down its various colours to discover how these asteroids have interacted with the , pinpointing any differences in composition between the two. In addition, APEX will make magnetic readings that will give insight into their interior structure of these bodies.

Guided by a navigation camera and a 'laser radar' (lidar) instrument, APEX will also make a landing on one of the asteroids, gathering valuable data in the process using inertial sensors, and going on to perform close-up observations of the asteroid's surface material.

The other CubeSat is called Juventas, developed by Danish company GomSpace and GMV in Romania, and will measure the gravity field as well as the internal structure of the smaller of the two Didymos asteroids.

MarCO-B, one of the experimental Mars Cube One (MarCO) CubeSats, took this image of Mars from about 7,600 km away during its flyby of the Red Planet on 26 November 2018. MarCO-B was flying by Mars with its twin, MarCO-A, to attempt to serve as communications relays for NASA's InSight spacecraft as it landed on Mars. Credit: NASA/JPL-Caltech

In close orbit around Didymoon, Juventas will line up with Hera to perform satellite-to-satellite radio-science experiments and carry out a low-frequency radar survey of the asteroid interior, similar to performing a detailed 'X-ray scan' of Didymoon to unveil its interior. The adventure will end with a landing, using the dynamics of any likely bouncing to capture details of the asteroid's surface material – followed by several days of surface operations.

Hera is set to be humankind's first mission to a binary asteroid system. As well as testing technologies in and gathering crucial science data, Hera is designed to be Europe's contribution to an international planetary defence effort: it would survey the crater and measure orbital deviation of Didymoon caused by the earlier collision of a NASA probe, called DART. This unique experiment will validate the asteroid deflection technique referred to as kinetic impactor, enabling humankind to protect our planet from asteroid impacts.

Next, the two CubeSats will have their designs refined and interfaces with their mothership finalised, in line with continuing design work on the Hera mission itself, which will be presented to ESA's Space19+ meeting towards the end of this year, where Europe's space ministers will take a final decision on flying the .

DART mission profile. Credit: NASA
Hera mission. Credit: European Space Agency

Explore further: Earth's first mission to a binary asteroid, for planetary defence

Related Stories

Image: Model binary asteroids

July 25, 2018

The smaller model asteroid seen here atop a rover that slowly wheels around another larger model asteroid, a practical recreation of the kind of binary asteroid system to be visited by ESA's proposed Hera mission.

Image: Simulating the darkness of space

October 31, 2018

A Halloween view inside one of the darker recesses of ESA's technical heart. Shaded to resemble the blackness of deep space, the GNC Rendezvous, Approach and Landing Simulator, or GRALS, is seen being used to test vision-based ...

AIDA double mission to divert Didymos asteroid's Didymoon

September 30, 2015

An ambitious joint US-European mission, called AIDA, is being planned to divert the orbit of a binary asteroid's small moon, as well as to give us new insights into the structure of asteroids. A pair of spacecraft, the ESA-led ...

Recommended for you

The powerful meteor that no one saw (except satellites)

March 19, 2019

At precisely 11:48 am on December 18, 2018, a large space rock heading straight for Earth at a speed of 19 miles per second exploded into a vast ball of fire as it entered the atmosphere, 15.9 miles above the Bering Sea.

Revealing the rules behind virus scaffold construction

March 19, 2019

A team of researchers including Northwestern Engineering faculty has expanded the understanding of how virus shells self-assemble, an important step toward developing techniques that use viruses as vehicles to deliver targeted ...

OSIRIS-REx reveals asteroid Bennu has big surprises

March 19, 2019

A NASA spacecraft that will return a sample of a near-Earth asteroid named Bennu to Earth in 2023 made the first-ever close-up observations of particle plumes erupting from an asteroid's surface. Bennu also revealed itself ...

Nanoscale Lamb wave-driven motors in nonliquid environments

March 19, 2019

Light driven movement is challenging in nonliquid environments as micro-sized objects can experience strong dry adhesion to contact surfaces and resist movement. In a recent study, Jinsheng Lu and co-workers at the College ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.