New catalysts for better fuel cells

January 10, 2019, DGIST (Daegu Gyeongbuk Institute of Science and Technology)
Professor Sangaraju Shanmugam (left) and Ph.D. Student Arumugam Sivanantham (right). Credit: Daegu Gyeongbuk Institute of Science and Technology (DGIST)

Researchers at Daegu Gyeongbuk Institute of Science & Technology (DGIST) have developed nano-catalysts that can reduce the overall cost of clean energy fuel cells, according to a study published in the journal of Applied Catalysis B: Environmental.

Polymer electrolyte membrane fuel cells (PEMFCs) transform the produced during a reaction between and oxygen into . While PEMFCs are a promising source of clean energy that is self-contained and mobile, much like the alkaline fuel cells used on the U.S. space shuttle, they currently rely on expensive materials. But the substances used for catalysing these chemical reactions degrade, raising concerns about reusability and viability.

DGIST energy materials scientist Sangaraju Shanmugam and his team have developed active and durable catalysts for PEMFCs that can reduce the overall manufacturing costs. The catalysts were nitrogen-doped nanorods with ceria and cobalt nanoparticles on their surfaces; essentially, carbon nanorods containing nitrogen, cobalt and ceria. Ceria (CeO2), a combination of cerium and oxygen, is a cheap and environmentally friendly semiconducting material that has excellent oxygen reduction abilities.

The fibres were made using a technique known as electrospinning, in which a is applied to a liquid droplet, forming a charged liquid jet that then dries midflight into uniform, nanosized particles. The researchers' analyses confirmed that the ceria and cobalt particles were uniformly distributed in the carbon nanorods and that the catalysts showed enhanced electricity-producing capacity.

The ceria-supported cobalt on nitrogen-doped carbon nanorod catalyst was found to be more active and durable than cobalt-only nitrogen-doped carbon nanorods and platinum/carbon. They were explored in two important types of chemical reactions for conversion and storage: oxygen reduction and oxygen evolution reactions.

The researchers conclude that ceria could be considered among the most promising materials for use with cobalt on nitrogen-doped carbon nanorods to produce stable catalysts with enhanced electrochemical activity in PEMFCs and related devices.

Explore further: Researchers advance biomass transformation process

More information: Arumugam Sivanantham et al, A synergistic effect of Co and CeO2 in nitrogen-doped carbon nanostructure for the enhanced oxygen electrode activity and stability, Applied Catalysis B: Environmental (2017). DOI: 10.1016/j.apcatb.2017.08.063

Related Stories

Researchers advance biomass transformation process

December 5, 2018

Biomass can serve as a renewable source for both energy and carbon. Acetone, n-butanol, and ethanol (ABE) fermentation broth as a biomass-derived source of fuels and chemicals has received a lot of attention for several decades. ...

Catalyst advance could lead to economical fuel cells

August 30, 2018

Researchers at Washington State University have developed a new way to make low-cost, single-atom catalysts for fuel cells—an advance that could make important clean energy technology more economically viable.

Recommended for you

Hand-knitted molecules

January 18, 2019

Molecules are usually formed in reaction vessels or laboratory flasks. An Empa research team has now succeeded in producing molecules between two microscopically small, movable gold tips – in a sense as a "hand-knitted" ...

Using bacteria to create a water filter that kills bacteria

January 18, 2019

More than one in 10 people in the world lack basic drinking water access, and by 2025, half of the world's population will be living in water-stressed areas, which is why access to clean water is one of the National Academy ...

Artificially produced cells communicate with each other

January 18, 2019

Friedrich Simmel and Aurore Dupin, researchers at the Technical University of Munich (TUM), have for the first time created artificial cell assemblies that can communicate with each other. The cells, separated by fatty membranes, ...

This computer program makes pharma patents airtight

January 17, 2019

Routes to making life-saving medications and other pharmaceutical compounds are among the most carefully protected trade secrets in global industry. Building on recent work programming computers to identify synthetic pathways ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.