Newly discovered adolescent star seen undergoing 'growth spurt'

December 19, 2018, University of Exeter
This illustration shows a young star undergoing a type of growth spurt. Left panel: Material from the dusty and gas-rich disk (orange) plus hot gas (blue) mildly flows onto the star, creating a hot spot. Middle panel: The outburst begins - the inner disk is heated, more material flows to the star, and the disk creeps inward. Right panel: The outburst is in full throttle, with the inner disk merging into the star and gas flowing outward (green). Credit: Caltech/T. Pyle (IPAC)

Astronomers have discovered a young star undergoing a rare growth spurt—giving a fascinating glimpse into the development of these distant stellar objects.

A team of international researchers, including experts from the University of Exeter's Physics and Astronomy department, have observed a rare stellar outburst on a newfound star, called Gaia 17bpi.

Gaia 17bpi belongs to a group of stars known as FU Ori's, named after the original member of the group, FU Orionis found in the Orion constellation.

Typically these FU Ori stars, which are less than a few million years old, are hidden behind thick clouds of dust and are therefore hard to observe.

However, the research team spotted the star undertaking a dramatic phase of evolution, whereby matter swirling around falls onto the star, and so bulking up its mass. The team was able to see this stellar outburst through both infrared and visible light.

Gaia 17bpi is only the 25th member of the FU Ori class found to date, and one of only about a dozen caught in the act of an outburst.

The research is published in The Astrophysical Journal.

Professor Tim Naylor, from Exeter's Astrophysics group and co-author of the study said: "It's taken a lot of patient waiting and careful sifting of data to uncover this star, but once we realised what was going it has exceeded expectations.

"It also gives us insight into events which may have happened as the planets in our own Solar System were beginning to form from a disc of material around the sun."

The location of Gaia 17bpi, which lies in the Sagitta constellation, is indicated in this image taken by NASA's Spitzer Space Telescope. Credit: NASA/JPL-Caltech/M. Kuhn (Caltech)

Gaia 17bpi was first spotted by the European Space Agency's Gaia satellite, which scans the sky continuously and makes precise measurements of stars in visible light. When Gaia spots a change in a star's brightness, an alert goes out to the astronomy community.

Exeter graduate student , and co-author of the study Sam Morrell was the first to notice that the star had brightened. Fellow members of the research team took the discovery forward, and discovered that the star's brightening had been independently captured in infrared light by NASA's asteroid-hunting NEOWISE satellite at the same time that Gaia saw it, as well as one-and-a-half-years earlier.

NASA's infrared-sensing Spitzer Space Telescope also happened to have witnessed the beginning of the star's brightening phase twice back in 2014, giving the researchers a bonanza of infrared data.

"These FU Ori events are extremely important in our current understanding of the process of star formation but have remained almost mythical because they have been so difficult to observe," says Lynne Hillenbrand, professor of astronomy at Caltech and lead author of a new report. "This is actually the first time we've ever seen one of these events as it happens in both optical and infrared light, and these data have let us map the movement of material through the disk and onto the star."

The new findings shine light on some of the longstanding mysteries surrounding the evolution of young stars, including how a star acquires all of its mass. Theorists believe that FU Ori events—in which mass is dumped from the disk onto the star over a total period of about 100 years—may help solve the riddle.

The new study shows, with the most detail yet, how material moves from the midrange of a disk, in a region located around one astronomical unit—the distance between the Earth and the sun—from the star, to the star itself.

NEOWISE and Spitzer were the first to pick up signs of the buildup of material in the middle of the disk. As the material started to accumulate in the disk, it warmed up, giving off infrared light. Then, as this material fell onto the star, it heated up even more, giving off visible light, which is what Gaia detected.

"While NEOWISE's primary mission is detecting nearby solar system objects, it also images all of the background stars and galaxies as it sweeps around the sky every six months," says co-author Roc Cutri, lead scientist for the NEOWISE Data Center at IPAC, an astronomy and data center at Caltech. "NEOWISE has been surveying in this way for five years now, so it is very effective for detecting changes in the brightness of objects."

Carlos Contreras, a Postdoctoral Research Fellow from the University of Exeter and co-author of the study added: "The FU Ori-type outbursts could also have an impact on the early formation and evolution of the planets that form in the discs around young stars.

The discovery of Gaia 17bpi was the by-product of an Exeter programme that has been monitoring a large sample of young stars using the data from the Gaia satellite, to measure the frequency of the FU Ori events during the planet forming stage."

The researchers used the W. M. Keck Observatory and Caltech's Palomar Observatory to help confirm the FU Ori nature of the newfound star. Says Hillenbrand, "You can think of Gaia as discovering the initial crime scene, while Keck and Palomar pointed us to the smoking gun."

Explore further: Image: Obscured Sirius reveals Gaia 1 cluster

More information: Lynne A. Hillenbrand et al. Gaia 17bpi: An FU Ori Type Outburst. arXiv:1812.06640 [astro-ph.SR]. arxiv.org/abs/1812.06640

Related Stories

Image: Obscured Sirius reveals Gaia 1 cluster

January 30, 2018

If you gazed at the night sky over the past few weeks, it is possible that you stumbled upon a very bright star near the Orion constellation. This is Sirius, the brightest star of the entire night sky, which is visible from ...

Image: The cat in Orion

April 3, 2018

What is the first creature that comes to mind when you look at the dark cloud in this image? Perhaps a dark kitten with a vivid white nose, front paws stretching towards the right of the frame and tail up towards the left? ...

How many stars to expect in Gaia's second data release

April 6, 2018

As astronomers worldwide are preparing to explore the second data release of ESA's Gaia satellite, the Data Processing and Analysing Consortium announced just how many sources will be included in the new catalogue, which ...

How to weigh stars with gravitational lensing

July 20, 2018

Astronomy & Astrophysics publishes the predictions of the passages of foreground stars in front of background stars. A team of astronomers, using ultra-precise measurements from the Gaia satellite, have accurately forecast ...

Two Hubble views of the same stellar nursery

April 19, 2018

These NASA Hubble Space Telescope images compare two diverse views of the roiling heart of a vast stellar nursery, known as the Lagoon Nebula. The images, one taken in visible and the other in infrared light, celebrate Hubble's ...

Image: Cloudy with a chance of protons

October 26, 2017

ESA's Gaia mission, in orbit since December 2013, is surveying more than a thousand million stars in our Galaxy, monitoring each target star about 70 times over a five-year period and precisely charting their positions, distances, ...

Recommended for you

Archaeologists discover Incan tomb in Peru

February 16, 2019

Peruvian archaeologists discovered an Incan tomb in the north of the country where an elite member of the pre-Columbian empire was buried, one of the investigators announced Friday.

Where is the universe hiding its missing mass?

February 15, 2019

Astronomers have spent decades looking for something that sounds like it would be hard to miss: about a third of the "normal" matter in the Universe. New results from NASA's Chandra X-ray Observatory may have helped them ...

What rising seas mean for local economies

February 15, 2019

Impacts from climate change are not always easy to see. But for many local businesses in coastal communities across the United States, the evidence is right outside their doors—or in their parking lots.

The friendly extortioner takes it all

February 15, 2019

Cooperating with other people makes many things easier. However, competition is also a characteristic aspect of our society. In their struggle for contracts and positions, people have to be more successful than their competitors ...

2 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

danR
not rated yet Dec 19, 2018
An acquaintance of mine has the first name "Ori" and I have an internal debate as to whether I should email him a link to this story, or just selected parts of it:

"Typically these FU Ori..."
"The FU Ori-type outbursts..."
"...adolescent star..."

There's no science to this comment, and probably even less wit, but the brevity cannot be denied.
rrwillsj
not rated yet Dec 20, 2018
I'm enjoying your c;ever re-scripting.

Keep us informed of your soon-to-be ex-friend's response!

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.