Climate players: Animals can swing a landscape's capacity to store carbon

December 6, 2018, Yale University
Credit: CC0 Public Domain

Advances in remote sensing technologies are helping scientists to better measure how global landscapes—from forests to savanna—are able to store carbon, a critical insight as they evaluate the potential role of ecosystems in mitigating climate change.

One factor often ignored in these cycle assessments, however, is the role of wild animals. Compared with the vast capacity for trees and plants to store carbon, the conventional wisdom goes, low-abundant animal populations simply can't have much effect on these global systems.

In a new paper published in Science, a team of researchers led by Yale's Oswald J. Schmitz makes the case that the very presence of wild animals can trigger direct or indirect feedback effects that alter a landscape's capacity to absorb, release, or transport carbon. In reviewing a growing body of research, they find that animals can increase or decrease rates of biogeochemical processes by 15 to 250 percent or more.

Indeed, they argue that failure to account for the role of animals can undermine the accuracy of any evaluation of ecosystem carbon budgets. They offer insights into how researchers might integrate animal ecology, ecosystem modeling, and remote sensing to more accurately predict and manage carbon cycling across landscapes.

"Some of us have been saying for a long time that it's not just animal abundance that matters but what these animals do that is important," said Schmitz, the Oastler Professor of Population and Community Ecology at the Yale School of Forestry & Environmental Studies, and lead author of the paper. "We're finally to the point that there's some pretty strong evidence to support these ideas."

The paper was co-authored by an interdisciplinary team from the University of California, Santa Cruz; Memorial University of Newfoundland; Northern Arizona University; Utah State University; the Universidade Estadual Paulista in Rio Claro, Brazil; and Stanford University.

Experimental and observational analyses have shown that changes in animal abundances can cause major shifts in capacity of ecosystems to store or exchange carbon. In some cases, these changes have even caused ecosystems to switch from carbon sources (when animals are not abundant) to carbon sinks (when they are).

In the Serengeti, for instance, the decimation of Wildebeest populations during the mid-20th century allowed ground vegetation to flourish, eventually promoting wildfires that consumed 80 percent of the ecosystem annually and led to a net release of carbon dioxide into the atmosphere; when disease management and anti-poaching efforts helped animal populations recover, a greater share of the carbon stored in vegetation was consumed by Wildebeest and released as dung, keeping it in the system and restoring the landscape as a CO2 sink.

In tropical forests, the conservation of large mammals maintains vital functional roles—including seed dispersal by frugivores and support of plant production by herbivores—that promote carbon storage; a 3.5-fold increase in the number of mammal species, one study finds, increases carbon retention by 230 to 400 percent.

But the presence of grazing herbivores in other places—such as caribou and muskox in the Arctic or moose in boreal forests—can cause a 15 to 70 percent decrease in CO2 uptake and storage.

Human impacts increasingly shape these relationships, whether it's through the reduction of wildlife populations through poaching, overfishing or lost habitat, or the reintroduction of species to landscapes.

Chris Wilmers, an associate professor of wildlife ecology and global change at the University of California, Santa Cruz, and co-author of the paper, says that humans have played a huge role in shaping animal communities, from the composition of species to the distances, directions, and speeds at which they move across landscapes.

"If we want to understand how our impacts on and/or management of animal populations scale up to influence ecosystem wide carbon cycling then we need tools that allow us to link the things animals do to their ultimate consequences on the carbon cycle," he said.

The authors review advances in spatial ecosystem ecology that can reveal the link between animal movements and patterns of carbon uptake and storage across landscapes. And they highlight developments in remote sensing that are enabling scientists to collect and analyze data needed to make these connections.

"We show the effects of animals are large and important, but also that remote sensing can greatly inform what we know about how animals alter ecosystems through time, whether appropriating biomass through herbivory or trampling or enhancing productivity through nutrient and seed dispersal," said Scott Goetz, a professor at Northern Arizona University who has conducted satellite remote sensing research for more than three decades, and another co-author.

"New technology, like the GEDI Lidar instrument launched this week to the International Space Station, will help us do a much better job of capturing the influence of animals on plant biomass and productivity dynamics."

The impact of wild animals on the carbon cycle becomes increasingly relevant as researchers and policy-makers consider the use of natural ecological processes to recapture and store atmospheric carbon within ecosystems as a tool to tackle climate change.

Researchers rarely consider wildlife conservation as a strategy to increase an ecosystem's carbon storage capacity, said Schmitz. In fact, some believe managing wildlife habitat conflicts with the goal of creating carbon storage capacity.

"They think that animals either aren't important enough or that you can't take up carbon and conserve in the same landscape," he said. "Our message is that you can and should. It can be a win-win for both biodiversity conservation and carbon uptake."

Explore further: Carbon cycle models underestimate indirect role of animals

More information: "Animals and the zoogeochemistry of the carbon cycle" Science (2018). … 1126/science.aar3213

Related Stories

Carbon cycle models underestimate indirect role of animals

October 16, 2013

Animal populations can have a far more significant impact on carbon storage and exchange in regional ecosystems than is typically recognized by global carbon models, according to a new paper authored by researchers at the ...

Are we losing one of our biggest carbon dioxide sinks?

November 1, 2018

In a new study spanning coastal areas of the Northern Hemisphere, a coordinated research network led by MSc Emilia Röhr, Assoc. Prof. Christoffer Boström from Åbo Akademi University and Prof. Marianne Holmer from University ...

Invasive plants can boost blue carbon storage

October 1, 2018

When invasive species enter the picture, things are rarely black and white. A new paper has revealed that some plant invaders could help fight climate change by making it easier for ecosystems to store "blue carbon"—the ...

Predators affect the carbon cycle, researchers show

June 17, 2013

A new study shows that the predator-prey relationship can affect the flow of carbon through an ecosystem. This previously unmeasured influence on the environment may offer a new way of looking at biodiversity management and ...

Recommended for you

Meteorite source in asteroid belt not a single debris field

February 17, 2019

A new study published online in Meteoritics and Planetary Science finds that our most common meteorites, those known as L chondrites, come from at least two different debris fields in the asteroid belt. The belt contains ...

Diagnosing 'art acne' in Georgia O'Keeffe's paintings

February 17, 2019

Even Georgia O'Keeffe noticed the pin-sized blisters bubbling on the surface of her paintings. For decades, conservationists and scholars assumed these tiny protrusions were grains of sand, kicked up from the New Mexico desert ...

Archaeologists discover Incan tomb in Peru

February 16, 2019

Peruvian archaeologists discovered an Incan tomb in the north of the country where an elite member of the pre-Columbian empire was buried, one of the investigators announced Friday.

Where is the universe hiding its missing mass?

February 15, 2019

Astronomers have spent decades looking for something that sounds like it would be hard to miss: about a third of the "normal" matter in the Universe. New results from NASA's Chandra X-ray Observatory may have helped them ...

What rising seas mean for local economies

February 15, 2019

Impacts from climate change are not always easy to see. But for many local businesses in coastal communities across the United States, the evidence is right outside their doors—or in their parking lots.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.