Newly discovered deep-sea microbes gobble greenhouse gases and perhaps oil spills, too

November 27, 2018, University of Texas at Austin
Researchers have documented extensive diversity in the microbial communities living in the extremely hot, deep-sea sediments located in the Guaymas Basin in the Gulf of California. This view of the Guaymas Basin seafloor was taken through the window of the Alvin submersible by Brett Baker in November 2018. Credit: Brett Baker/University of Texas at Austin.

Scientists at The University of Texas at Austin's Marine Science Institute have discovered nearly two dozen new types of microbes, many of which use hydrocarbons such as methane and butane as energy sources to survive and grow—meaning the newly identified bacteria might be helping to limit the concentrations of greenhouse gases in the atmosphere and might one day be useful for cleaning up oil spills.

In a paper published in Nature Communications this week, researchers documented extensive diversity in the microbial communities living in the extremely hot, deep-sea sediments located in the Guaymas Basin in the Gulf of California. The team uncovered new microbial species that are so genetically different from those that have been previously studied that they represent new branches in the . Many of these same species possess keen pollutant-eating powers, like other, previously identified in the ocean and soil.

"This shows the deep oceans contain expansive unexplored biodiversity, and microscopic organisms there are capable of degrading oil and other harmful chemicals," said assistant professor of marine science Brett Baker, the paper's primary investigator. "Beneath the ocean floor huge reservoirs of hydrocarbon gases—including methane, propane, butane and others—exist now, and these microbes prevent greenhouse gases from being released into the atmosphere."

The new study, representing the largest-ever genomic sampling of Guaymas Basin sediments, was co-authored by former UT postdoctoral researcher Nina Dombrowski and University of North Carolina professor Andreas P. Teske.

Brett Baker (left) and pilot Jefferson Grau inside the deep-sea submersible Alvin during a dive in the Guaymas Basin in November 2018. Credit: Andreas Teske

The researchers' analysis of sediment from 2,000 meters below the surface, where volcanic activity raises temperatures to around 200 degrees Celsius, recovered 551 genomes, 22 of which represented new entries in the tree of life. According to Baker, these new species were genetically different enough to represent new branches in the tree of life, and some were different enough to represent entirely new phyla.

"The tree of life is something that people have been trying to understand since Darwin came up with the concept over 150 years ago, and it's still this moving target at the moment," said Baker, who earlier was part of a team that mapped the most comprehensive genomic tree of life to date. "Trying to map the tree is really kind of crucial to understanding all aspects of biology. With DNA sequencing and the computer approaches that we use, we're getting closer, and things are expanding quickly."

Only about 0.1 percent of the world's microbes can be cultured, which means there are thousands, maybe even millions, of microbes yet to be discovered.

Baker's team investigates interactions between microbial communities and the nutrients available to them in the environment by taking samples of sediment and microbes in nature, and then extracting DNA from the samples. The researchers sequence the DNA to piece together individual genomes, the sets of genes in each organism, and infer from the data how microbes consume different nutrients.

The Alvin deep-sea submersible awaits another collection run in the Guaymas Basin in November 2018. Credit: Brett Baker/University of Texas at Austin
"For this, we try to look for organisms that have been studied before and look for similarities and differences," said Dombrowski, who is now at the Royal Netherlands Institute for Sea Research. "This might initially sound easy, but really is not, since often more than half of the genes we find are so far uncharacterized and unknown."

The samples were collected using the Alvin submersible, the same sub that found the Titanic, because the microbes live in extreme environments. Teske, who collaborated with Baker and Dombrowski, has driven sample collection at Guaymas Basin for several years, working with scientists across the world who are using different approaches to study life there.

This month, Baker is part of a team on the Alvin sampling in areas of the basin that previously have never been studied.

"We think that this is probably just the tip of the iceberg in terms of diversity in the Guaymas Basin," Baker said. "So, we're doing a lot more DNA sequencing to try to get a handle on how much more there is. This paper is really just our first hint at what these things are and what they are doing."

Explore further: Hemimastigotes found to represent a major new branch on evolutionary tree of life

More information: Nina Dombrowski et al, Expansive microbial metabolic versatility and biodiversity in dynamic Guaymas Basin hydrothermal sediments, Nature Communications (2018). DOI: 10.1038/s41467-018-07418-0

Related Stories

Examining the lifestyles of microbes

September 28, 2017

Microbes are everywhere—in humans they protect us from harmful bacteria and help us digest food; in soils, they provide nutrients and encourage growth of plants. Microbes even live in sediments below the seafloor where ...

Marine fungi reveal new branches on tree of life

November 17, 2015

Researchers from the University of Exeter have discovered several new species of marine fungi inhabiting previously undescribed branches of the tree of life. Little is known about the fungi flourishing in the world's oceans ...

Observing the development of a deep-sea greenhouse gas filter

September 28, 2018

In a long-term study, marine scientists from Bremen have for the first time observed the slow colonization of the crater around a deep-sea mud volcano after its eruption. The first settlers are tiny organisms that eat methane ...

Recommended for you

Greenland ice loss quickening

December 7, 2018

Using a 25-year record of ESA satellite data, recent research shows that the pace at which Greenland is losing ice is getting faster.

New study explains creation of deadly California 'firenado'

December 6, 2018

A rare fire tornado that raged during this summer's deadly Carr Fire in Northern California was created by a combination of scorching weather, erratic winds and an ice-topped cloud that towered miles into the atmosphere, ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

betterexists
1 / 5 (1) Nov 27, 2018
For now, Make Microbes that have power of Both of them.
Once more of similar ones are found, keep adding the relevant features !

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.