Future wildfires: Stronger buildings could delay, but not stop, destruction alone

Future wildfires: Stronger buildings could delay, but not stop, destruction alone
Even though no building material is fireproof, a few strategies could still allow more evacuation time during a future wildfire. Credit: Purdue University

California's deadly Camp Fire is now 100 percent contained, but low humidity and strong winds in the state mean that wildfires could strike again.

Unfortunately, better building materials and planning can only offer so much protection, says a Purdue University natural hazards engineering expert.

"Two possible strategies to mitigate a structure's vulnerabilities to wildfire damage include incorporating better building materials and creating a defensible space around the structure where a can be stopped," says Julio Ramirez, the center director for the National Science Foundation's Natural Hazards Engineering Research Infrastructure Network Coordination Office, and Purdue's Karl H. Kettelhut Professor of Civil Engineering.

"But no is completely fireproof," he says.

The majority of Camp Fire damage was concentrated on buildings with wooden frames and flammable roof material.

To delay damage, Ramirez says, the frames should be substituted with concrete reinforced by steel, and the roofs with clay tiles. The type of windows is also important, as single-pane windows are vulnerable to glass breakage due to high temperatures.

A defensible space adds extra protection. Buildings in these regions should be farther apart from each other – since in highly populated areas increases risk of fires – and as far away as possible from or shrubbery.

When fire reaches a reinforced , the heat has to first cause the concrete to separate and fall off, exposing steel. Then the steel eventually melts and the structure can potentially collapse.

Despite its shortcomings, reinforced concrete combined with a defensible space could still buy time for people to evacuate along identified routes.

"The biggest problem with wildfires is how quickly they spread," Ramirez says. "Even though reinforced concrete can be more expensive than wood, it's not unreasonable for areas commonly stricken by this type of natural disaster."

Cities should also evaluate , such as risk of a transformer spark initiating a fire, and further educate residents on preventive measures in a dry environment.

Explore further

Stronger buildings could delay wildfire destruction, but not stop it, professor says

Provided by Purdue University
Citation: Future wildfires: Stronger buildings could delay, but not stop, destruction alone (2018, November 28) retrieved 30 October 2020 from https://phys.org/news/2018-11-future-wildfires-stronger-destruction.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Feedback to editors

User comments