The shape of things to come: Flexible, foldable supercapacitors for energy storage

November 20, 2018, Elsevier
(a) schematic of the symmetric paper supercapacitor with the structure of GNPs electrodes (b) image of the fabricated supercapacitor (c) image of paper supercapacitor in bend state. Credit: Heliyon DOI: 10.1016/j.heliyon.2018.e00862

A team of researchers from the Plasma Physics Research Centre, Science and Research Branch of Islamic Azad University in Tehran, Iran, have discovered a way of making paper supercapacitors for electricity storage, according to a new study published in the journal Heliyon. At one sheet thick, these new supercapacitors can bend, fold, flex, and still hold electricity.

The term "supercapacitors" is reserved for devices that hold over 10 times as much per unit volume as a traditional capacitor, and that can charge and discharge quickly. Paper supercapacitors are lighter and cheaper than other types and those developed by lead author, Dr. Leila Fekri Aval's group are more flexible than earlier supercapacitors, giving them a whole new range of potential uses. "In the near future, the industrial and homemade applications for these types of supercapacitors will increase and the cost reduce, making them available to the public," explains Dr. Aval.

Today, if you need to store a large amount of energy, you will typically need to use large, heavy rechargeable batteries. Supercapacitors can do this too, but at a step up: They charge and discharge more quickly than conventional batteries—in minutes rather than hours—and they can be charged and discharged more times over their lifespan.

Carbon, taking the form of nanotubes in today's capacitors and supercapacitors, contains the ideal properties for storing energy efficiently. Since the 1950s, researchers have exploited its strength and excellent thermal and electrical conductivity; carbon is also strong, elastic and flexible so that it can bend and stretch easily.

The team of researchers investigated the structure of commercial supercapacitors and produced one that uses one sheet of carbon nanotube paper with different layers. They used barium titanate to separate the layers, which is more economical than any alternative compounds. The new paper superconductors can store energy efficiently even if they are rolled or folded.

The potential applications of these new devices are vast: Medical implants, skin patches, wearable tech, and novel large-scale energy storage for domestic and commercial transport and smart packaging. Imagine, for example, using a computer tablet that can roll up and fit in your pocket or a phone that is part of your coat, or charging your phone with a battery that is part of your clothing.

Dr. Aval anticipates that the commercial and domestic applications of these supercapacitors will soon increase and the cost decrease, so the technology will become available to the mass market. "Energy is our most important challenge in the future," said Dr. Aval. "It is important to build a device that stores energy, has high power and energy density, but at a low cost. This is what inspired our research into paper supercapacitors."

Explore further: Compact and flexible supercapacitor developed using simple spray coating method

More information: "High-Performance Supercapacitors Based on the Carbon nanotubes, Graphene and Graphite Nanoparticles Electrodes" by Fekri Aval et al. Heliyon DOI: 10.1016/j.heliyon.2018.e00862 , https://www.heliyon.com/article/e00862

Related Stories

Paper supercapacitor addresses power/energy density tradeoff

September 27, 2017

By coating ordinary paper with layers of gold nanoparticles and other materials, researchers have fabricated flexible paper supercapacitors that exhibit the best performance of any textile-type supercapacitor to date. In ...

Rapid cellphone charging getting closer to reality

October 25, 2017

The ability to charge cellphones in seconds is one step closer after researchers at the University of Waterloo used nanotechnology to significantly improve energy-storage devices known as supercapacitors.

Recommended for you

Engineers repurpose wasp venom as an antibiotic drug

December 7, 2018

The venom of insects such as wasps and bees is full of compounds that can kill bacteria. Unfortunately, many of these compounds are also toxic for humans, making it impossible to use them as antibiotic drugs.

Researchers probe hydrogen bonds using new technique

December 7, 2018

Researchers at Carnegie Mellon University have used nuclear resonance vibrational spectroscopy to probe the hydrogen bonds that modulate the chemical reactivity of enzymes, catalysts and biomimetic complexes. The technique ...

Are amorphous solids elastic or plastic?

December 7, 2018

In a crystalline solid, the atoms form an ordered lattice. Crystalline solids respond elastically to small deformations: When the applied strain is removed, the macroscopic stress, as well as the microscopic configuration ...

Molecular insights into spider silk

December 7, 2018

Spider silk is one of the toughest fibres in nature and has astounding properties. Scientists from the University of Würzburg discovered new molecular details of self-assembly of a spider silk fibre protein.

Copycat cells command new powers of communication

December 7, 2018

From kryptonite for Superman to plant toxins for poison ivy, chemical reactions within the body's cells can be transformative. And, when it comes to transmuting cells, UC San Diego researchers are becoming superhero-like ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.