A tiny antenna could be good for your health—all you have to do is stick it in your brain

October 11, 2018 by Laura Castañón, Northeastern University
Credit: Northeastern University

Antennas have come a long way from the rabbit ears on your old TV. But the antenna that Northeastern doctoral student Hwaider Lin has been working on since 2015 is about 100 times smaller than the one currently in your smartphone.

Lin said the antenna he is developing could eventually be used in a chip implanted in a patient's brain to help treat disorders such as depression or severe migraines. Currently, researchers use electromagnetic currents created outside a patient's head to stimulate neurons in the brain to help treat these medical conditions. But this method is imprecise. With a smaller antenna, researchers may be able to create an implant in the brain that would more precisely target specific neurons.

Lin's antenna recently won first prize in design a contest run by the publishers of NASA Tech Briefs magazine. More than 800 applicants from 60 different countries submitted their technology to the "Create the Future Design Contest," which judges feats of innovative engineering in seven different categories. Lin topped the category for Electronics/Sensors/Internet of Things.

"I'm kind of surprised I got the first prize," Lin said. "But I think [the antenna] is worth it."

Conventional antennas send signals by bouncing electrons back and forth along a metal cable. This creates waves of electromagnetic radiation that can be picked up by other antennas tuned to the right frequency. Changing the size of the antenna changes the frequency. There's a limit to how small these antennas can be before they stop being effective.

The antenna Lin has been working on starts with a different kind of wave: an acoustic one. Acoustic waves are slow-moving physical vibrations. Because of their slower speed, they can match the frequency of an electromagnetic wave, but will have a wavelength that is thousands of times smaller. This means the antenna can be smaller too.

Credit: Northeastern University

Lin's antenna is able to translate those acoustic waves into faster-moving electromagnetic ones with the same frequency. This is because the material vibrating in Lin's antenna is magnetic.

"We actually do materials science first," said Lin, who works in Northeastern's Advanced Materials and Microsystems Lab. "Our material is the most important thing for this antenna."

This work was first published in August 2017 in Nature Communications. Since then, Lin and his advisor, Northeastern professor Nian Sun, have been refining it to be used in different applications.

"So far, the best choice is biomedical applications," Lin said. "They need a really small that can receive power and transmit information back to the computer outside."

The team recently started working with a group at Harvard Medical School to find ways to use this technology in medical implants. Together, they have the potential to design new devices to sense what is going on in the brain, stimulate different areas, and communicate important information back to researchers.

But first, Lin will be flying to a reception in New York to receive his prize from NASA Tech Briefs: a high-end computer that can handle the complicated simulations his work requires.

"This event is very special," Lin said. "They see the potential of this technology."

Explore further: New membrane-based antenna much smaller than conventional ones

More information: Tianxiang Nan et al. Acoustically actuated ultra-compact NEMS magnetoelectric antennas, Nature Communications (2017). DOI: 10.1038/s41467-017-00343-8

Related Stories

Tiny antennas show promise in defense sector

August 24, 2018

Electrical engineering research into extremely small antennas has made progress that could have a major impact on secure information exchange, giving the U.S. access to a band of frequency no other country can reach.

Spray-on antennas unlock communication of the future

September 24, 2018

Hear the word "antenna" and you might think about rabbit ears on the top of an old TV or the wire that picks up radio signals for a car. But an antenna can be much smaller – even invisible. No matter its shape or size, ...

Engineers design next-generation non-reciprocal antenna

March 14, 2016

Researchers in the Cockrell School of Engineering at The University of Texas at Austin have designed an antenna that is able to process incoming and outgoing radio-wave signals more efficiently and without the need for separate ...

Recommended for you

Magic number colloidal clusters

December 14, 2018

Complexity in nature often results from self-assembly, and is considered particularly robust. Compact clusters of elemental particles can be shown to be of practical relevance, and are found in atomic nuclei, nanoparticles ...

Tangled magnetic fields power cosmic particle accelerators

December 13, 2018

Magnetic field lines tangled like spaghetti in a bowl might be behind the most powerful particle accelerators in the universe. That's the result of a new computational study by researchers from the Department of Energy's ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.