Homebody tendencies put Hawaiian gallinules at risk

October 24, 2018, American Ornithological Society
Hawaiian Gallinule's tendency to stay in one place puts island populations at greater risk from severe events such as hurricanes. Credit: J. Underwood

The Hawaiian Islands are home to a range of unique, endangered bird species. Many waterbirds such as the Hawaiian Coot and Hawaiian Gallinule have been recovering in recent decades thanks to intensive wetland management, but past declines have left them with reduced genetic diversity. A new study from The Condor: Ornithological Applications looks at what the birds' genes can tell us about their behavior today and finds that one species' lack of wanderlust may be putting it at greater risk.

The U.S. Fish and Wildlife's Jared Underwood and his colleagues trapped birds on Oahu and Kauai and took blood, tissue, and feather samples. Genetic analysis conducted at the U.S. Geological Survey by Sarah Sonsthagen and colleagues showed that Hawaiian Coots disperse regularly between , while Hawaiian Gallinules do not. The researchers believe that Hawaiian coot populations in some wetlands are reaching the maximum they can support, which is one factor causing them to leave in search of new territories. Historical evidence suggests that gallinules also moved around frequently prior to population declines, so either their behavior has changed, or, unlike the coots, they have yet to reach local carrying capacities.

"The Common Gallinule as a species is considered quite vagile—that is, it tends to move around a lot—so it was surprising to find a high level of genetic structure between two islands separated by only 175 kilometers," says coauthor Jared Underwood. "Other Common Gallinule subspecies found in the Pacific frequently move between islands that are separated by greater distances." Hawaiian Gallinules' homebody tendencies put them at greater risk from severe one-off events like hurricanes, which could wipe out an entire island's worth of birds. Their lack of gene flow also means that populations on individual islands need to be larger in order to be viable long-term.

Despite recent gains, the researchers warn that rising seas, diseases, and introduced predators continue to threaten both species. "A key component of the resilience and persistence of species and populations is the retention of ," adds Underwood. "Information regarding the genetic structure for each species will allow managers to design different strategies and criteria for the ' recovery."

Explore further: Genetic drift caught in action in invasive birds

More information: "Interisland genetic structure of two endangered Hawaiian waterbirds: The Hawaiian Coot and Hawaiian Gallinule" DOI: 10.1650/CONDOR-18-98.1

Related Stories

Genetic drift caught in action in invasive birds

January 17, 2018

Studies of island bird populations have taught us a lot about evolution, but it's hard to catch birds in the act of naturally colonizing new islands. Instead, a new study from The Auk: Ornithological Advances examines what's ...

High genetic diversity in an ancient Hawaiian clone

December 22, 2011

The entire Hawaiian population of the peat moss Sphagnum palustre appears to be a clone that has been in existence for some 50,000 years researchers have discovered. The study is published in New Phytologist.

Hawaiian fruit flies had multiple ancestors

August 19, 2016

A team from Hokkaido University and Ehime University has discovered that Hawaiian drosophilids (fruit flies) had plural ancestors that hailed from continents, refuting the "single Hawaiian origin" hypothesis.

Recommended for you

Activating a new understanding of gene regulation

November 19, 2018

Regulation of gene expression—turning genes on or off, increasing or decreasing their expression—is critical for defining cell identity during development and coordinating cellular activity throughout the cell's lifetime. ...

Geneticists solve long-standing finch beak mystery

November 19, 2018

Bridgett vonHoldt is best known for her work with dogs and wolves, so she was surprised when a bird biologist pulled her aside and said, "I really think you can help me solve this problem." So she turned to a mystery he'd ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.