World speed record for polymer simulations shattered by over a hundred-fold

September 17, 2018, Uppsala University
Dr. Airidas Korolkovas is a postdoctoral researcher in the Department of Physics and Astronomy, Uppsala University, Sweden, and a long-term visitor at the Institut Laue-Langevin, 71 avenue des Martyrs, Grenoble, France. Credit: Airidas Korolkovas

From a humble plastic bag to ultra-light airplane wings, polymers are everywhere. These molecules are long chains of atoms that play many roles for good and bad, from organic photovoltaics to indestructible plastic pollution. Polymers are useful in liquid form, as well: The difference between tomato puree and ketchup is merely 0.5 percent of xanthan gum, which is a polymer made from sugar. Ketchup is thick but not sticky, thanks to xanthan chains that are so long that they interpenetrate and form an entangled web that resists flow. The same principle also underpins high-tech applications like ink jet printing.

It is possible to decrease the amount of thickening additives without compromising their effect on flow, which would save costs and minimize the environmental impact. Connecting the ends of three linear chains to a single point results in a configuration called a star . Due to this branched architecture, webs of star polymers are dramatically more entangled than their linear cousins of the same mass. To explain how this entanglement works, consider the concept of a random walk. Imagine you are on a hike and you play a game: toss a coin four times and take a step left for every heads, and a step right for every tails. You will most often end up two steps away from the starting point. In fact, if we multiply the final distance by itself, 2x2=4, it is equal to the number of random steps. This is the law of diffusion, and it governs the motion of small molecules like water.

For polymers, we have to take the random walk to higher dimensions. Imagine you are on a hike again, but this time, you bring a hundred friends, and for safety, you all link up with a rope. Every member starts playing the random walk game, but the rope has some slack, so it takes a while for you to feel the pull of the entire team. This kind of motion is a random walk, embedded in another, slower random walk. Here, 4x4=16 random steps are required to move a distance of two steps. Next, imagine hundreds of rope teams all mingled so densely that they only have room to move up or down the line of their own team. The effect of the crowd brings us to 16x16=256 steps. Can you guess how many steps would be required by adding an extra branch to the middle of each rope team? Hint: it is not 256x256=65536. It takes a staggering 65536x65536=4.3 billion random attempts to get merely two steps away.

This result has been shown in a recent study "5-D Entanglement in Star Polymer Dynamics," by Airidas Korolkovas published in Advanced Theory and Simulations, a new journal focusing on breakthroughs in the science of modeling. A unique computer algorithm was invented to capture the billions of steps needed for entangled polymers. It runs on a high-speed GPU and takes advantage of texture mapping. Originally, this feature was designed for video games, but here, it has been repurposed to calculate the molecular forces inside a little polymer droplet. Using a streamlined physics model, this simulation runs hundreds of times faster than traditional code. It opens new horizons on the time scales that can be addressed in scientific computing. This can further push the frontiers for the latest generation of supercomputers, like the recently opened Summit in Oak Ridge National Lab, USA, which has almost 30,000 GPUs.

The effect of higher dimensional entanglement can be observed in real life using an instrument called neutron spin-echo. This machine shoots tiny subatomic particles, called neutrons, and listens to the echo of their nuclear spin as they scatter, or bounce off the polymer sample. A prime example is the IN15 beamline at the Institut Laue-Langevin, France, where the entanglement of linear polymers was first discovered. Thanks to constant upgrades and to upcoming new facilities like the European Spallation Source in Sweden, an experimental proof of the simulation prediction for star polymers may soon be within reach. A combination of high performance computing and neutron scattering is a powerful tool of discovery for new materials that improve our quality of life and respect the environment.

Explore further: 'Random walk' of heat carriers in amorphous polymers

More information: Airidas Korolkovas, 5D Entanglement in Star Polymer Dynamics, Advanced Theory and Simulations (2018). DOI: 10.1002/adts.201800078

Related Stories

'Random walk' of heat carriers in amorphous polymers

March 1, 2018

The intrinsic structure of amorphous polymers is highly disordered with long, entangled molecular chains. They are usually considered as thermal insulators due to their ultra-low thermal conductivity. One effective way to ...

A tango with tangled polymers

June 14, 2018

While statisticians are driven by real-world problems, U of S mathematics professor Chris Soteros is motivated by the more esoteric behaviour of long-chain molecules, such as polymers and DNA, and the mathematical problems ...

Study reveals how polymers relax after stressful processing

July 2, 2018

The polymers that make up synthetic materials need time to de-stress after processing, researchers said. A new study has found that entangled, long-chain polymers in solutions relax at two different rates, marking an advancement ...

Designer polymers on demand

August 8, 2018

When jewelers create a necklace, they control the order and number of each bead or jewel they use to form a desired pattern. It's been challenging for scientists to do the same thing when designing polymers—until now. In ...

Resolving tension on the surface of polymer mixes

October 11, 2017

Better than playing with Legos, throwing polymer chains of different lengths into a mix can yield surprising results. In a new study published in EPJ E, physicists focus on how a mixture of chemically identical chains into ...

Parrondo's paradox with a three-sided coin

July 11, 2018

Physicists have demonstrated that Parrondo's paradox—an apparent paradox in which two losing strategies combine to make a winning strategy—can emerge as a coin game with a single coin in the quantum realm, but only when ...

Recommended for you

New targets in the battle against antibiotic resistance

November 16, 2018

Bacteria are increasingly resistant to available antibiotics. A team of chemists from the Technical University of Munich (TUM) have now identified important enzymes in the metabolism of staphylococci. Blocking these enzymes ...

AI heralds new frontiers for predicting enzyme activity

November 16, 2018

Researchers from the Departments of Chemistry and Engineering Science at the University of Oxford have found a general way of predicting enzyme activity. Enzymes are the protein catalysts that perform most of the key functions ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.