Researchers show how toxins of the bacterium Clostridium difficile get into gut cells

September 12, 2018, University of Freiburg
Toxins produced by the bacterium Clostridium difficile penetrate the intestinal cell with the help of the protein known as TRiC. Credit: Klaus Aktories

Treating bacterial infections with antibiotics often kills intestinal flora, leading to diarrhoea and inflammation of the gut. Often it is bacteria known as Clostridium difficile which are responsible; they proliferate when the normal microbiome is killed by antibiotics. A working group headed by Professor Dr. Dr. Klaus Aktories of the Institute of Experimental and Clinical Pharmacology at the University of Freiburg, collaborating with Professor Dr. Andreas Schlosser of the Rudolf Virchow Center in Würzburg, has shown how the microbes' poisonous proteins penetrate intestinal cells. The results of their study are published in the Proceedings of the National Academy of Sciences.

Clostridium difficile produces toxins in the gut that get into cells in the intestinal mucosal surface, disrupting their barrier function. Researchers have long known how these toxins affect cells. They transfer sugar to switch proteins, rendering them inactive. This leads to disintegration and death of the cell. But it was not known how the relatively large proteins in the toxins were able to enter the host cell. It was only known that the bind with the surface of and enter via tiny pores from blister-like structures in the cytoplasm called vesicles.

As the working group has shown, further up-take of the toxins depends on the protein TRiC. It is responsible for folding proteins—which occur as long chains of amino acids in the cell—giving them their three-dimensional structure. The researchers found that TRiC also plays an essential role in folding bacterial toxins, which are transferred through the cell membrane as long chains and, once inside, have to be re-folded. When the researchers blocked TRiC with an inhibitor or switched it off genetically, poisoning of the cell did not occur.

The effect of other bacterial toxins which can transmit sugars is also dependent on TRiC. These latest findings may help researchers find active agents to combat the toxins.

Explore further: Molecular docking site of a bacterial toxin identified

More information: Marcus Steinemann et al, The chaperonin TRiC/CCT is essential for the action of bacterial glycosylating protein toxins likeClostridium difficiletoxins A and B, Proceedings of the National Academy of Sciences (2018). DOI: 10.1073/pnas.1807658115

Related Stories

Molecular docking site of a bacterial toxin identified

June 9, 2015

Clostridium difficile is a dangerous intestinal bacterium that can cause severe diarrhoea and life-threatening intestinal infections after long-term treatment with antibiotics. The pharmacologists and toxicologists Prof. ...

Gate for bacterial toxins found

April 16, 2014

Prof. Dr. Dr. Klaus Aktories and Dr. Panagiotis Papatheodorou from the Institute of Experimental and Clinical Pharmacology and Toxicology of the University of Freiburg have discovered the receptor responsible for smuggling ...

Tiny gels sop up intestinal toxins

March 20, 2018

Bacterial infections that target the intestine can cause conditions that range from uncomfortable to deadly. While it's easy to blame the bacteria, it's actually the toxins the bacteria produce that trigger inflammation, ...

Versatile C. difficile blocker

January 26, 2018

Clostridium difficile (C. difficile) infection is the leading cause of hospital-acquired diarrhea, causing nearly a half million infections in the United States each year. Recurrence after treatment with antibiotics is common ...

Recommended for you

How birds and insects reacted to the solar eclipse

November 14, 2018

A team of researchers with Cornell University and the University of Oxford has found that birds and insects reacted in some surprising ways to the 2017 U.S. total solar eclipse. In their paper published in the journal Biology ...

Symbiosis a driver of truffle diversity

November 14, 2018

While the sight of black or white truffle being shaved over on pasta is generally considered a sign of dining extravagance, they play an important role in soil ecosystem services. Truffles are the fruiting bodies of the ectomycorrhizal ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.