Quantum mechanics work lets oil industry know promise of recovery experiments before they start

September 28, 2018 by Heidi Hall, Vanderbilt University
Quantum mechanics work lets oil industry know promise of recovery experiments before they start
Clockwise from top left: a schematic diagram of the calcite/brine/oil system, a simulation supercell (color scheme: Ca-indigo, C-brown, O-red, H-white) with ions in brine shown schematically, and the oil-in-water contact angle assuming an initial mixed-wet state and difference (relative to calcite-water) in the effective charge of the surface. Credit: Sokrates Pantelides

With their current approach, energy companies can extract about 35 percent of the oil in each well. Every 1 percent above that, compounded across thousands of wells, can mean billions of dollars in additional revenue for the companies and supply for consumers.

Extra oil can be pushed out of wells by forced water – often inexpensive seawater – but scientists doing experiments in the lab found that sodium in water impedes its ability to push oil out, while other trace elements help. Scientists experiment with various combinations of calcium, magnesium, sulfates and other additives, or "wettability modifiers," in the laboratory first, using the same calcite as is present in the well. The goal is to determine which lead to the most from the rock.

Vanderbilt University physicist Sokrates Pantelides and postdoctoral fellow in physics Jian Liu developed detailed quantum mechanical simulations on the atomic scale that accurately predict the outcomes of various additive combinations in the water.

They found that calcium, magnesium and sulfates settle farther from the calcite surface, rendering it more water-wet by modifying the effective charge on the surface, enhancing oil recovery. Their predictions have been backed by experiments carried out by their collaborators at Khalifa University in Abu Dhabi: Saeed Alhassan, associate professor of chemical engineering and director of the Gas Research Center, and his research associate, Omar Wani.

"Now, scientists in the lab will have a procedure by which they can make intelligent decisions on experiments instead of just trying different things," said Pantelides, University Distinguished Professor of Physics and Engineering, William A. & Nancy F. McMinn Professor of Physics, and professor of electrical engineering. "The discoveries also set the stage for future work that can optimize choices for candidate ions."

The team's paper, "Wettability alteration and enhanced oil recovery induced by proximal adsorption of Na+, Cl-, Ca2+, Mg2+, and SO2-4 ions on calcite," appears today in the journal Physical Review Applied. It builds on Pantelides' previous work on wettability, released earlier this year.

His co-investigators in Abu Dhabi said the work will have a significant impact on the oil industry.

"We are excited to shed light on combining molecular simulations and experimentation in the field of to allow for more concrete conclusions on the main phenomenon governing the process," Alhassan said. "This work showcases a classic approach in materials science and implements it in the oil and gas industry: the combination of modeling and experiment to provide understanding and solutions to underlying problems."

Explore further: New materials with important applications in enhanced oil recovery

More information: Jian Liu et al. Wettability Alteration and Enhanced Oil Recovery Induced by Proximal Adsorption of Na+ , Cl , Ca2+ , Mg2+ , and SO42− Ions on Calcite, Physical Review Applied (2018). DOI: 10.1103/PhysRevApplied.10.034064

Related Stories

Study reveals new physics of how fluids flow in porous media

August 23, 2016

One of the most promising approaches to curbing the flow of human-made greenhouse gases into the atmosphere is to capture these gases at major sources, such as fossil-fuel-burning power plants, and then inject them into deep, ...

Recommended for you

Magic number colloidal clusters

December 14, 2018

Complexity in nature often results from self-assembly, and is considered particularly robust. Compact clusters of elemental particles can be shown to be of practical relevance, and are found in atomic nuclei, nanoparticles ...

Tangled magnetic fields power cosmic particle accelerators

December 13, 2018

Magnetic field lines tangled like spaghetti in a bowl might be behind the most powerful particle accelerators in the universe. That's the result of a new computational study by researchers from the Department of Energy's ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

Ralph
5 / 5 (1) Sep 28, 2018
It is an impressive achievement for quantum mechanical calculations to help elucidate the properties of such a complex, real-world system. I would not have imagined such complex calculations would be practical.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.