Graphene could be key to controlling water evaporation

July 12, 2018, Institute of Physics
This visualisation shows layers of graphene used for membranes. Credit: University of Manchester

Graphene coatings may offer the ability to control the water evaporation process from various surfaces, according to new research.

The study, carried out by a team from the Chinese Academy of Sciences and the Collaborative Innovation Center of Quantum Matter (Beijing), looked at the interactions of water molecules with various graphene-covered surfaces.

It is published today in the journal 2-D Materials.

Lead author Dr. Yongfeng Huang, from the Chinese Academy of Sciences, said: "Water droplet is a ubiquitous and complicated phenomenon, and plays a pivotal role in nature and industry. Understanding its mechanism at the atomic scale, and controlling rationally is important for applications including heat transfer and body-temperature control. However, it remains a significant challenge."

The team's experiments showed that a graphene coating controls water evaporation by suppressing the evaporation rate on hydrophilic surfaces, and accelerating evaporation on hydrophobic ones.

Dr. Huang said: "More importantly, we found graphene is 'transparent' for evaporation. When a hydrophilic surface is coated with graphene, the contact line of the water droplet is dramatically shortened or elongated, because of adjustment in wetting angles. This leads to changes in the evaporation rate."

The researchers wanted to understand the 'transparency' in graphene-mediated evaporation, and uncover its underlying structure on the atomic scale. To do this, they conducted molecular dynamics simulations on water droplet evaporation, on surfaces with and without a graphene coating.

For the first time, they identified the atomic-scale mechanism for substrate-induced evaporation events. They found that water molecule forms a precursor state at the contact line before it evaporates.

Dr. Huang explained: "Further analysis showed water density in evaporation transition states is largest at the contact line, then decreases exponentially as it goes away from the substrate. Single water desorption at the contact line dominates the droplet evaporation process. Since the graphene does not alter the binding energy of a single water molecule, it has negligible effects on evaporation of per contact line.

"Our results are an important discovery on graphene-mediated evaporation, and also point to new ways to rationally control evaporation process, for realistic applications in heat transfer, printing and related areas."

Professor James Sprittles from the University of Warwick, UK assessed the work. He said: "Using experiments supplemented with , Dr. Huang and co-workers have provided fascinating insights into the molecular mechanisms governing the evaporation of droplets on technologically-relevant coated substrates.

"Their research shows that wettability is solely responsible for evaporation rate changes, and simultaneously opens up several interesting topics for future research, such as how molecular effects (e.g. precursor nanofilms and thermal fluctuations) can be incorporated into macroscopic modelling."

Explore further: New insights on graphene

More information: "Transparency in Graphene Mediated Evaporation" Huang et al 2018 2D Mater. 5 041001, DOI: 10.1088/2053-1583/aac9ff

Related Stories

New insights on graphene

December 21, 2017

Graphene floating on water does not repel water, as many researchers believe, but rather attracts it. This has been demonstrated by chemists Liubov Belyaeva and Pauline van Deursen and their supervisor Grégory F. Schneider. ...

New insights into the evaporation patterns of coffee stains

March 3, 2016

Few of us pay attention to the minutiae of coffee stains' deposition patterns. However, physicists have previously explained the increased deposition of ground coffee particles near the edge of an evaporating droplet of liquid. ...

Evaporation dynamics at the nano- and micro-scale

October 27, 2017

A new evaporation dynamics study finds that very small droplets evaporate more slowly than predicted by current models. Researchers from the Institute of Physical Chemistry of the Polish Academy of Sciences (IPC PAS) in Warsaw, ...

Recommended for you

Single-celled architects inspire new nanotechnology

July 16, 2018

Diatoms are tiny, unicellular creatures, inhabiting oceans, lakes, rivers, and soils. Through their respiration, they produce close to a quarter of the oxygen on earth, nearly as much as the world's tropical forests. In addition ...

X-ray triggered nano-bubbles to target cancer

July 16, 2018

Innovative drug filled nano-bubbles, able to be successfully triggered in the body by X-rays, have been developed by researchers, paving the way for a new range of cancer treatments for patients.

Smart window controls light and heat, kills microorganisms

July 13, 2018

A new smart window offers more than just a nice view—it also controls the transmittance of sunlight, heats the interiors of buildings by converting solar radiation into heat, and virtually eliminates E. coli bacteria living ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.