Newly discovered magnetic state could lead to green IT solutions

September 24, 2018, Delft University of Technology
Tilted magnetic spirals and skyrmions in a vertical magnetic field. Credit: Scixel/TU Delft

Magnetic skyrmions are magnetic swirls that may lead to new solutions combining low-energy consumption with high-speed computational power and high-density data storage, revolutionizing information technology. A team from Delft University of Technology, in collaboration with the University of Groningen and Hiroshima University, has discovered a new, unexpected magnetic state, which is related to these skyrmions. The findings open up new ways to create and manipulate complex magnetic structures in view of future IT applications.

A magnetic is a quasiparticle, a magnetic swirl, which, once created, is highly stable and cannot collapse. Moreover, skyrmions are tiny and can travel through materials nearly unimpeded, much like tsunamis travel through the oceans. These unique properties make skyrmions promising building blocks for green IT applications, such as high density hard drives without any moving parts. Since their initial discovery almost 10 years ago, skyrmions have been found to be ubiquitous. In recent years, physicists have discovered new types of skyrmions, as well as new material classes that host skyrmions. However, all these systems show the same generic behaviour, which was therefore assumed to be universal.

Now, however, an international collaboration of experimental and theoretical physicists led by Delft University of Technology has discovered an entirely new state that does not fit into the universal scheme and may be used to manipulate skyrmions. "This state appears under the influence of high magnetic fields and low temperatures," said Katia Pappas of Delft University of Technology. "Nobody, including us, had expected to find it there."

The researchers obtained experimental confirmation for this new phase through the use of neutron scattering, magnetization and AC magnetic susceptibility measurements. Small-angle neutron scattering, first at the Laboratoire Léon Brillouin, France, and finally at Oak Ridge National Laboratory, in the USA, provided the crucial evidence. It revealed a change in the microscopic structure when magnetic spirals that are aligned along a magnetic field drift away from it when the magnetic field increases. "This is unexpected," Pappas said. "It is as if a ball that lies on the ground starts levitating when its mass or the gravitational force increases."

The theoretical explanation of this surprising result, provided by the Hiroshima and Groningen groups, is based on the strong sensitivity of the magnetic spirals to weak interactions of relativistic origin. Thus, a slight change in the balance of relatively weak interactions can have major consequences on the magnetic properties of these chiral magnets.

The findings, which have been published in Science Advances, open up new ways to create and manipulate complex magnetic structures and use these structures for green IT applications.

Explore further: Meet the skyrmions—exotic quasiparticles could revolutionise computing

More information: Fengjiao Qian et al. New magnetic phase of the chiral skyrmion material Cu2OSeO3, Science Advances (2018). DOI: 10.1126/sciadv.aat7323

Related Stories

Researchers observe unique chiral magnetic phenomenon

June 29, 2018

Tiny magnetic vortex structures, so-called skyrmions, have been researched intensively for some time for future energy-efficient space-saving data storage devices. Scientists at Forschungszentrum Jülich have now discovered ...

Frustrated magnets point towards new memory

September 23, 2015

Theoretical physicists from the University of Groningen, supported by the FOM Foundation, have discovered that so-called 'frustrated magnets' can produce skyrmions, tiny magnetic vortices that may be used in memory storage. ...

Second skyrmion phase found in Cu2OSeO3

July 3, 2018

A team of researchers affiliated with several institutions in Germany has found a second skyrmion phase in a sample of Cu2OSeO3. In their paper published in the journal Nature Physics, the group describes how they found the ...

Chemical 'pressure' tuning magnetic properties

December 13, 2017

Unusual, tiny vortexes spinning on the surface of certain magnets could offer a way to reduce the energy demands of computers. Controlling the vortexes is key. Scientists found that chemical substitution in a well-studied ...

Recommended for you

Physicists discover new class of pentaquarks

March 26, 2019

Tomasz Skwarnicki, professor of physics in the College of Arts and Sciences at Syracuse University, has uncovered new information about a class of particles called pentaquarks. His findings could lead to a new understanding ...

Coffee-based colloids for direct solar absorption

March 22, 2019

Solar energy is one of the most promising resources to help reduce fossil fuel consumption and mitigate greenhouse gas emissions to power a sustainable future. Devices presently in use to convert solar energy into thermal ...

Physicists reveal why matter dominates universe

March 21, 2019

Physicists in the College of Arts and Sciences at Syracuse University have confirmed that matter and antimatter decay differently for elementary particles containing charmed quarks.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.