Method to determine oxidative age could show how aging affects nanomaterial's properties

September 27, 2018, American Institute of Physics
In bulk powders the oxidation of magnetite to maghemite is shown by a change in color from black to red, but in nanoparticles it is not nearly so easy to distinguish the two phases. Credit: Lara Bogart

Iron oxide nanoparticles are used in sentinel node detection, iron replacement therapy and other biomedical applications. New work looks to understand how these materials age, and how aging may change their functional or safety profiles.

For the first time, by combining lab-based Mössbauer spectroscopy with "center of gravity" analysis, researchers can quantify the diffusive oxidation of into maghemite, and track the process. In Applied Physics Letters, the work is poised to help understand the aging mechanisms in nanomaterials, and how these effects change the way they interact with the human body.

"It's almost an unasked question about how this material oxidizes over time," said Dr. Quentin Pankhurst. "We need more information about it. This technique helps us know what's happening as products are sitting on the shelf."

Distinguishing the two forms of iron oxide nanoparticles is so difficult that it has led to an unofficial convention of naming samples "magnetite/maghemite" when their composition isn't known. Mössbauer spectroscopy uses nuclear gamma rays to measure how much of a sample has atoms with the +2 charge found in magnetite compared to the +3 charge that predominates in maghemite. These subtle measurements are processed with center of gravity calculations, which combines the data to create a bigger picture for the sample.

Moreover, the test doesn't destroy samples, so researchers can track the oxidation of over long periods of time.

Next, the group is looking to extend its technique to a broader range of magnetite and maghemite samples and help other researchers better understand how a nanomaterial's age correlates with its functional properties.

"We've raised a question about whether the oxidative aging affects the particles, but we haven't seen if that's the case or not," he said. "Now there's this idea that aging is going on, and that's a whole other parameter we haven't been measuring. I'd be delighted if other people explored this correlation between function and aging in their own materials."

Explore further: Researchers find simpler way to deposit magnetic iron oxide onto gold nanorods

More information: Lara K. Bogart et al, Environmental oxidative aging of iron oxide nanoparticles, Applied Physics Letters (2018). DOI: 10.1063/1.5050217

Related Stories

Protein-Nanoparticle Material Mimics Human Brain Tissue

July 21, 2006

A composite material consisting of a horse protein and metallic nanoparticles displays magnetic properties very similar to those of human brain tissue, scientists have found. The work, published in the June 20 online edition ...

The finer details of rust

December 4, 2014

Scientists at the Vienna University of Technology have been studying the behavior of iron oxide surfaces. The atomic structure of iron oxide, which had been assumed to be well-established, turned out to be wrong. The behavior ...

Recommended for you

Nanosized ferroelectrics become a reality

October 22, 2018

Using ferroelectricity instead of magnetism in computer memory saves energy. If ferroelectric bits were nanosized, this would also save space. But conventional wisdom dictates that ferroelectric properties disappear when ...

Taking steps toward a wearable artificial kidney

October 17, 2018

There just aren't enough kidney transplants available for the millions of people with renal failure. Aside from a transplant, the only alternative for patients is to undergo regular dialysis sessions to clear harmful cellular ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.