Hundreds of electricity-generating bacteria found, including pathogenic, probiotic and fermenting bacteria

September 12, 2018, University of California - Berkeley
Listeria bacteria transport electrons through their cell wall into the environment as tiny currents, assisted by ubiquitous flavin molecules (yellow dots). Credit: Amy Cao. Copyright UC Berkeley.

While bacteria that produce electricity have been found in exotic environments like mines and the bottoms of lakes, scientists have missed a source closer to home: the human gut.

University of California, Berkeley, scientists discovered that a common diarrhea-causing bacterium, Listeria monocytogenes, produces electricity using an entirely different technique from known electrogenic bacteria, and that hundreds of other bacterial species use this same process.

Many of these sparking bacteria are part of the microbiome, and many, like the bug that causes the food-borne illness listeriosis, which can also cause miscarriages, are pathogenic. The bacteria that cause gangrene (Clostridium perfringens) and hospital-acquired infections (Enterococcus faecalis) and some disease-causing streptococcus bacteria also produce electricity. Other electrogenic bacteria, like Lactobacilli, are important in fermenting yogurt, and many are probiotics.

"The fact that so many bugs that interact with humans, either as pathogens or in probiotics or in our microbiota or involved in fermentation of human products, are electrogenic—that had been missed before," said Dan Portnoy, a UC Berkeley professor of molecular and cell biology and of plant and microbial biology. "It could tell us a lot about how these bacteria infect us or help us have a healthy gut."

The discovery will be good news for those currently trying to create living batteries from microbes. Such "green" bioenergetic technologies could, for example, generate electricity from bacteria in waste treatment plants.

The research will be posted online Sept. 12 in advance of Oct. 4 print publication in the journal Nature.

Breathing metal

Bacteria generate electricity for the same reason we breathe oxygen: to remove electrons produced during metabolism and support energy production. Whereas animals and plants transfer their electrons to oxygen inside the mitochondria of every cell, bacteria in environments with no oxygen —- including our gut, but also alcohol and cheese fermentation vats and acidic mines —- have to find another electron acceptor. In geologic environments, that has often been a mineral —- iron or manganese, for example —- outside the cell. In some sense, these bacteria "breathe" iron or manganese.

Transferring electrons out of the cell to a mineral requires a cascade of special chemical reactions, the so-called extracellular electron transfer chain, which carries the electrons as a tiny electrical current. Some scientists have tapped that chain to make a battery: stick an electrode in a flask of these bacteria and you can generate electricity.

The newly discovered extracellular electron transfer system is actually simpler than the already known transfer chain, and seems to be used by bacteria only when necessary, perhaps when oxygen levels are low. So far, this simpler electron transfer chain has been found in bacteria with a single cell wall —- microbes classified as —- that live in an environment with lots of flavin, which are derivatives of vitamin B2.

"It seems that the cell structure of these bacteria and the vitamin-rich ecological niche that they occupy makes it significantly easier and more cost effective to transfer electrons out of the cell," said first author Sam Light, a postdoctoral fellow. "Thus, we think that the conventionally studied mineral-respiring bacteria are using extracellular electron transfer because it is crucial for survival, whereas these newly identified bacteria are using it because it is 'easy.'"

To see how robust this system is, Light teamed up with Caroline Ajo-Franklin from Lawrence Berkeley National Laboratory, who explores the interactions between living microbes and inorganic materials for possible applications in carbon capture and sequestration and bio-solar energy generation.

She used an electrode to measure the electric current that streams from the bacteria —- up to 500 microamps —- confirming that it is indeed electrogenic. In fact, they make about as much electricity —- some 100,000 electrons per second per cell —- as known electrogenic bacteria.

Light is particularly intrigued by the presence of this system in Lactobacillus, bacteria crucial to the production of cheese, yogurt and sauerkraut. Perhaps, he suggests, electron transport plays a role in the taste of cheese and sauerkraut.

"This is a whole big part of the physiology of bacteria that people didn't realize existed, and that could be potentially manipulated," he said.

Light and Portnoy have many more questions about how and why these bacteria developed such a unique system. Simplicity —- it's easier to transfer electrons through one cell wall rather than through two —- and opportunity —- taking advantage of ubiquitous flavin molecules to get rid of electrons—appear to have enabled these to find a way to survive in both oxygen-rich and oxygen-poor environments.

Explore further: Could electricity-producing bacteria help power future space missions?

More information: A flavin-based extracellular electron transfer mechanism in diverse Gram-positive bacteria, Nature (2018). DOI: 10.1038/s41586-018-0498-z , https://www.nature.com/articles/s41586-018-0498-z

Related Stories

Voltage loss in electrically conductive bacteria

May 9, 2018

An international research group has shed new light on cable bacteria. Using laser light, researchers have followed electrons as they travel through the current-conducting bacteria, and on the basis of the electrical potential ...

Microbial fuel cell converts methane to electricity

May 17, 2017

Transporting methane from gas wellheads to market provides multiple opportunities for this greenhouse gas to leak into the atmosphere. Now, an international team of researchers has taken the first step in converting methane ...

Recommended for you

The taming of the dog, cow, horse, pig and rabbit

November 20, 2018

Research at the Earlham Institute into one of the 'genetic orchestra conductors', microRNAs, sheds light on our selectively guided evolution of domestic pets and farmyard animals such as dogs and cows.

Discovery could neutralize West Nile virus

November 20, 2018

Researchers at Vanderbilt University Medical Center and colleagues have isolated a human monoclonal antibody that can "neutralize" the West Nile virus and potentially prevent a leading cause of viral encephalitis (brain inflammation) ...

8 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

Sol88
1 / 5 (2) Sep 12, 2018
As above, so below
antigoracle
not rated yet Sep 12, 2018
Shocking!!
thingumbobesquire
not rated yet Sep 13, 2018
I sing the gut electric.
jonesdave
1.8 / 5 (5) Sep 13, 2018
As above, so below


Huh? Pointless post if ever I saw one. Another EU nutjob, methinks.
cortezz
3 / 5 (2) Sep 13, 2018
Huh? Pointless post if ever I saw one. Another EU nutjob, methinks.

Same goes to your post without the EU part.

Someone should use these bacteria and develop a handy charger for our mobile phones, wearable electronics etc. Get electricity from stomach and replace the navel with an usb-slot :)
jonesdave
1.8 / 5 (5) Sep 13, 2018
Huh? Pointless post if ever I saw one. Another EU nutjob, methinks.

Same goes to your post without the EU part.

Someone should use these bacteria and develop a handy charger for our mobile phones, wearable electronics etc. Get electricity from stomach and replace the navel with an usb-slot :)


Trust me - I know the poster from elsewhere. He is an EU nutjob.
theredpill
5 / 5 (3) Sep 13, 2018
"He is an EU nutjob"

Then he probably understands what a current is....since it is an article about electricity and you do not...I'd say you are out classed as usual.
cantdrive85
5 / 5 (2) Sep 13, 2018
This is likely why sound therapy and Rife frequency type therapy works as well as they do.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.