Single-molecule magnetic tweezers reveal dual function of FACT in gene regulation

July 23, 2018, Chinese Academy of Sciences

In eukaryotic cells, linear genetic DNA wraps around histones to form stable nucleosomes that further assemble to form chromatins. Nucleosomes represent big barriers to the transcription machine RNA polymerase.

During gene transcription, nucleosomes must first be temporarily removed then rapidly restored afterward. A factor known as Facilitates Chromatin Transcription (FACT) enables the elongation of RNA polymerase on chromatin. But the mechanism by which FACT performs this crucial function is still poorly understood.

Single-molecule magnetic tweezers have become a powerful tool for studying the dynamics of nucleic acid-protein complexes. By exerting tension on a chromatin, magnetic tweezers can be used to study the construction of a chromatin by deconstructing it, thus yielding force spectroscopic fingerprints characteristic of each chromatin. Professors LI Wei and LI Ming from the Institute of Physics of the Chinese Academy of Sciences recently improved the temporal and spatial resolution of their self-developed magnetic tweezers.

In collaboration with Professors LI Guohong and CHEN Ping from the Institute of Biophysics of the Chinese Academy of Sciences, they investigated the dynamics of nucleosomes and chromatin fibers in the presence of FACT and deciphered the role of FACT in remodeling nucleosomes and fibers at the single-molecular level. The researchers found that FACT not only destabilized the nucleosome structure to assist the passage of polymerase, but also enhanced the reversibility of nucleosome formation.

In the presence of FACT, nucleosomes are totally unfolded at tensions below 8 pN, which is much lower than for nucleosomes in the absence of FACT (~15 pN). At the same time, nucleosomes cannot reassemble their intact structure in the absence of FACT, due to the dissociation of histones from DNA. However, nucleosomes can reassemble in the presence of FACT, which indicates FACT's additional function of tethering histones to DNA in order to reassemble the intact structure.

The dual function of FACT is further proved through coordination between the two subunits SSRP1 and SPT16. These findings provide molecular detail for the interaction between FACT and nucleosomes. These findings suggest that FACT plays an essential role in restringing nucleosomes to preserve the histone on DNA throughout the DNA polymerase passage during DNA transcription.

Explore further: Molecular biologists compared human and yeast FACT

More information: Ping Chen et al, Functions of FACT in Breaking the Nucleosome and Maintaining Its Integrity at the Single-Nucleosome Level, Molecular Cell (2018). DOI: 10.1016/j.molcel.2018.06.020

Related Stories

Molecular biologists compared human and yeast FACT

May 28, 2018

A protein complex called facilitates chromatin transcription (FACT) plays a role in DNA packing within a nucleus, as well as in oncogenesis. A team of scientists from MSU, working in cooperation with foreign colleagues, have ...

A new, dynamic view of chromatin movements

January 18, 2018

In cells, proteins tightly package the long thread of DNA into pearl necklace-like complexes known as chromatin. Scientists at EPFL show for the first time how chromatin moves, answering longstanding questions about how its ...

Finding the proteins that unpack DNA

July 12, 2018

A new method allows researchers to systematically identify specialized proteins that unpack DNA inside the nucleus of a cell, making the usually dense DNA more accessible for gene expression and other functions. The method, ...

Unspooling DNA from nucleosomal disks

May 23, 2013

The tight wrapping of genomic DNA around nucleosomes in the cell nucleus makes it unavailable for gene expression. A team of Ludwig-Maximilians-Universitaet (LMU) in Munich now describes a mechanism that allows chromosomal ...

Elusive Z- DNA found on nucleosomes

January 20, 2012

New research published in BioMed Central's open access journal Cell & Bioscience is the first to show that left-handed Z-DNA, normally only found at sites where DNA is being copied, can also form on nucleosomes.

Recommended for you

EPA adviser is promoting harmful ideas, scientists say

March 22, 2019

The Trump administration's reliance on industry-funded environmental specialists is again coming under fire, this time by researchers who say that Louis Anthony "Tony" Cox Jr., who leads a key Environmental Protection Agency ...

Coffee-based colloids for direct solar absorption

March 22, 2019

Solar energy is one of the most promising resources to help reduce fossil fuel consumption and mitigate greenhouse gas emissions to power a sustainable future. Devices presently in use to convert solar energy into thermal ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.