Researchers use nanotechnology to improve the accuracy of measuring devices

July 25, 2018, National Research University Higher School of Economics

Scientists from National Research University Higher School of Economics and collaborators have synthesized multi-layered nanowires in order to study their magnetoresistance properties. Improving this effect will allow scientists to increase the accuracy of indicators of various measuring instruments such as compasses and radiation monitors. The results of the study have been published in a paper titled "Structure of Cu/Ni Nanowires Obtained by Matrix Synthesis."

One of the unique features of artificial nanostructures is the large magnetoresistance effect in thin layers of metal. This effect is exploited in various electronic devices.

The scientists synthesized multi-layered copper and nickel in order to study their characteristics, which depend on the layers' composition and geometry. "We expect that the transition to multi-layered nanowires will increase this magnetoresistance effect considerably. Today, we are choosing the method of nanowire synthesis in order to get this effect," said co-author Ilia Doludenko of the Moscow Institute of Electronics and Mathematics (MIEM HSE).

To determine the correlation between the synthesis parameters and the crystal structure, the scholars synthesized nanowires of different lengths. The nanowire length was determined by the number of deposition cycles; one nickel layer and one copper layer were deposited in each cycle. The size of the nanowires was determined using a scanning electron microscope (SEM). The number of pairs of layers in the nanowires was found to be 10, 20, or 50, according to the number of electrodeposition cycles.

When the length of the nanowire was compared to the number of layers, it turned out that the relationship between the nanowire length and the number of layers was nonlinear. The average lengths of the nanowires composed of 10, 20 and 50 pairs of layers were, respectively, 1.54 μm, 2.6 μm, and 4.75 μm. The synthesized nanowires all had a grain structure with crystallites of different sizes, from 5-20 nm to 100 nm. Large, bright reflections were mainly due to metals (Ni and Cu) while diffuse rings and small reflections are generally related to the presence of copper oxides.

An elemental analysis confirmed the presence of alternating Ni and Cu layers in all of the nanowires in the study. However, the mutual arrangement of layers may differ. Ni and Cu layers in the same nanowire may be oriented perpendicular to its axis or be at a particular angle. The individual units of the same nanowire may have different thicknesses. The thickness of individual units in nanowires is in the range of 50-400 nm.

According to the study authors, this heterogeneity depends on the parameters of the pore and decreases closer to the pore mouth. This leads to an increase in current, enhancement of deposition rate, and, as a result, an increase in the deposited thickness. Another possible reason is the difference in the diffusion mobilities of ions of different metals. This explains the nonlinear relationship between the nanowire length and the number layers mentioned above. The study of the composition of particular units demonstrated that copper units consist mainly of copper, while nickel is almost entirely absent. Nickel units, on the other hand, always contain a certain amount of copper. This amount may sometimes be as high as 20%.

The relevance of these findings relates to the potential creation of more accurate and cheaper detectors of motion, speed, position, current and other parameters. Such instruments could be used in the car industry, or to produce or improve medical devices and radiation monitors and electronic compasses.

Explore further: Nanowires could be the LEDs of the future

More information: O. M. Zhigalina et al, Structure of Cu/Ni Nanowires Obtained by Matrix Synthesis, Crystallography Reports (2018). DOI: 10.1134/S1063774518030379

Related Stories

Nanowires could be the LEDs of the future

June 24, 2015

The latest research from the Niels Bohr Institute shows that LEDs made from nanowires will use less energy and provide better light. The researchers studied nanowires using X-ray microscopy and with this method they can pinpoint ...

Eco-friendly production of silicon nanowires

October 19, 2016

Physicists from the Lomonosov Moscow State University have worked out a new and more eco-friendly method of obtaining silicon nanowires that replaces hydrofluoric acid (HF) with ammonium fluoride (NH4F).

Scalable growth of high quality bismuth nanowires

December 11, 2014

Bismuth nanowires have intriguing electronic and energy-harvesting application possibilities. However, fabricating these materials with high quality and in large quantities is challenging.

Team grows uniform nanowires

November 10, 2014

A researcher from Missouri University of Science and Technology has developed a new way to grow nanowire arrays with a determined diameter, length and uniform consistency. This approach to growing nanomaterials will improve ...

Recommended for you

Weaponizing oxygen to kill infections and disease

August 19, 2018

The life-threatening bacteria called MRSA can cripple a hospital since it spreads quickly and is resistant to treatment. But scientists report that they are now making advances in a new technique that avoids antibiotics. ...

Flexible color displays with microfluidics

August 16, 2018

A new study published on Microsystems and Nanoengineering by Kazuhiro Kobayashi and Hiroaki Onoe details the development of a flexible and reflective multicolor display system that does not require continued energy supply ...

Twisted electronics open the door to tunable 2-D materials

August 16, 2018

Two-dimensional (2-D) materials such as graphene have unique electronic, magnetic, optical, and mechanical properties that promise to drive innovation in areas from electronics to energy to materials to medicine. Columbia ...

Scientists discover why silver clusters emit light

August 16, 2018

Clusters of silver atoms captured in zeolites, a porous material with small channels and voids, have remarkable light-emitting properties. They can be used for more efficient lighting applications as a substitute for LED ...

Novel sensors could enable smarter textiles

August 16, 2018

A team of engineers at the University of Delaware is developing next-generation smart textiles by creating flexible carbon nanotube composite coatings on a wide range of fibers, including cotton, nylon and wool. Their discovery ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.