Physicists devise method to reveal how light affects materials

June 5, 2018 by Carol Clark, Emory University
"Our finding may pave the way for improvements in devices such as optical sensors and photovoltaic cells," says Emory physicist Hayk Harutyunyan. Credit: Emory University

Physicists developed a way to determine the electronic properties of thin gold films after they interact with light. Nature Communications published the new method, which adds to the understanding of the fundamental laws that govern the interaction of electrons and light.

"Surprisingly, up to now there have been very limited ways of determining what exactly happens with after we shine on them," says Hayk Harutyunyan, an assistant professor of physics at Emory University and lead author of the research. "Our finding may pave the way for improvements in devices such as and photovoltaic cells."

From solar panels to cameras and cell phones—to seeing with our eyes—the interaction of photons of light with atoms and electrons is ubiquitous. "Optical phenomenon is such a fundamental process that we take it for granted, and yet it's not fully understood how light interacts with materials," Harutyunyan says.

One obstacle to understanding the details of these interactions is their complexity. When the energy of a light photon is transferred to an electron in a light-absorbing material, the fphoton is destroyed and the electron is excited from one level to another. But so many photons, atoms and electrons are involved—and the process happens so quickly—that laboratory modeling of the process is computationally challenging.

For the Nature Communications paper, the physicists started with a relatively simple material system—ultra-thin gold layers—and conducted experiments on it.

"We did not use brute computational power," Harutyunyan says. "We started with experimental data and developed an analytical and theoretical model that allowed us to use pen and paper to decode the data."

Harutyunyan and Manoj Manjare, a post-doctoral fellow in his lab, designed and conducted the experiments. Stephen Gray, Gary Wiederrecht and Tal Heilpern—from the Argonne National Laboratory—came up with the mathematical tools needed. The Argonne physicists also worked on the theoretical model, along with Alexander Govorov from Ohio University.

For the experiments, the nanolayers of gold were positioned at particular angles. Light was then shined on the gold in two, sequential pulses. "These laser light pulses were very short in time—thousands of billions of times shorter than a second," Harutyunyan says. "The first pulse was absorbed by the gold. The second pulse of light measured the results of that absorption, showing how the electrons changed from a ground to excited state."

Typically, gold absorbs light at green frequencies, reflecting all the other colors of the spectrum, which makes the metal appear yellow. In the form of nanolayers, however, gold can absorb light at longer wave lengths, in the infrared part of the spectrum.

"At a certain excitation angle, we were able to induce electronic transitions that were not just a different frequency but a different physical process," Harutyunyan says. "We were able to track the evolution of that process over time and demonstrate why and how those transitions happen."

Using the method to better understand the interactions underlying light absorption by a material may lead to ways to tune and manage these interactions.

Photovoltaic solar energy cells, for instance, are currently only capable of absorbing a small percentage of the light that hits them. Optical sensors used in biomedicine and photo catalysts used in chemistry are other examples of devices that could potentially be improved by the new method.

While the Nature Communications paper offers proof of concept, the researchers plan to continue to refine the method's use with while also experimenting with a range of other materials.

"Ultimately, we want to demonstrate that this is a broad method that could be applied to many useful materials," Harutyunyan says.

Explore further: High-energy electrons synced to ultrafast laser pulse to probe how vibrational states of atoms change in time

More information: Tal Heilpern et al. Determination of hot carrier energy distributions from inversion of ultrafast pump-probe reflectivity measurements, Nature Communications (2018). DOI: 10.1038/s41467-018-04289-3

Related Stories

Attoseconds break into atomic interior

February 27, 2018

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons ...

A space-time sensor for light-matter interactions

November 30, 2017

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion ...

Recommended for you

How community structure affects the resilience of a network

June 22, 2018

Network theory is a method for analyzing the connections between nodes in a system. One of the most compelling aspects of network theory is that discoveries related to one field, such as cellular biology, can be abstracted ...

The pho­to­elec­tric ef­fect in stereo

June 22, 2018

In the photoelectric effect, a photon ejects an electron from a material. Researchers at ETH have now used attosecond laser pulses to measure the time evolution of this effect in molecules. From their results they can deduce ...

Water can be very dead, electrically speaking

June 21, 2018

In a study published in Science this week, the researchers describe the dielectric properties of water that is only a few molecules thick. Such water was previously predicted to exhibit a reduced electric response but it ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Jun 05, 2018
Let us know when you actually get something useful to write about.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.