Mars Curiosity's labs are back in action

June 4, 2018 by Andrew Good, NASA
The drill bit of NASA's Curiosity Mars rover over one of the sample inlets on the rover's deck. The inlets lead to Curiosity's onboard laboratories. This image was taken on Sol 2068 by the rover's Mast Camera (Mastcam). It has been white balanced and contrast-enhanced. Credits: NASA/JPL-Caltech/MSSS

NASA's Curiosity rover is analyzing drilled samples on Mars in one of its onboard labs for the first time in more than a year.

"This was no small feat. It represents months and months of work by our team to pull this off," said Jim Erickson, project manager of the Mars Science Laboratory mission, which is led by NASA's Jet Propulsion Laboratory in Pasadena, California. The Curiosity is part of the MSL mission. "JPL's engineers had to improvise a new way for the rover to rocks on Mars after a mechanical problem took the drill offline in December 2016."

The rover drilled its last scheduled sample in October 2016.

On May 20, a technique called "feed extended drilling" allowed Curiosity to drill its first rock sample since October 2016; on May 31, an additional technique called "feed extended sample transfer" successfully trickled rock powder into the rover for processing by its mineralogy laboratory. Delivery to its chemistry will follow in the week ahead.

Testing of both the new drilling method and sample delivery will continue to be refined as Curiosity's engineers study their results from Mars. But this is a major milestone for the mission, said Ashwin Vasavada of JPL, the mission's project scientist.

"The science team was confident that the engineers would deliver—so confident that we drove back to a site that we missed drilling before. The gambit paid off, and we now have a key sample we might have never gotten," Vasavada said. "It's quite remarkable to have a moment like this, five years into the mission. It means we can resume studying Mount Sharp, which Curiosity is climbing, with our full range of scientific tools."

The new sample transfer technique allows Curiosity to position its drill over two small inlets on top of the rover's deck, trickling in the appropriate amount of rock powder for the onboard laboratories to do their analyses.

This had already been successfully tested at JPL. But that's here on Earth; on Mars, the thin, dry atmosphere provides very different conditions for powder falling out of the drill.

"On Mars we have to try and estimate visually whether this is working, just by looking at images of how much powder falls out," said John Michael Moorokian of JPL, the engineer who led development of the new sample delivery method. "We're talking about as little as half a baby aspirin worth of sample."

Too little powder, and the laboratories can't provide accurate analyses. Too much, and it could overfill the instruments, clogging parts or contaminating future measurements. A successful test of the delivery method on May 22 led to even further improvements in the technique.

Part of the challenge is that Curiosity's drill is now permanently extended. That new configuration no longer gives it access to a special device that sieves and portions drilled samples in precise amounts. That device, called the Collection and Handling for In-Situ Martian Rock Analysis (CHIMRA), played an important role in delivering measured portions of to the laboratories inside the rover.

Explore further: Drilling success: Curiosity is collecting Mars rocks

Related Stories

Drilling success: Curiosity is collecting Mars rocks

May 23, 2018

Engineers working with NASA's Curiosity Mars rover have been hard at work testing a new way for the rover to drill rocks and extract powder from them. This past weekend, that effort produced the first drilled sample on Mars ...

Curiosity rover confirms first drilled Mars rock sample

February 20, 2013

(Phys.org)—NASA's Mars rover Curiosity has relayed new images that confirm it has successfully obtained the first sample ever collected from the interior of a rock on another planet. No rover has ever drilled into a rock ...

Recommended for you

HESS J1943+213 is an extreme blazar, study finds

June 21, 2018

An international group of astronomers have carried out multi-wavelength observations of HESS J1943+213 and found evidence supporting the hypothesis that this gamma-ray source is an extreme blazar. The finding is reported ...

'Red nuggets' are galactic gold for astronomers

June 21, 2018

About a decade ago, astronomers discovered a population of small, but massive galaxies called "red nuggets." A new study using NASA's Chandra X-ray Observatory indicates that black holes have squelched star formation in these ...

The Rosetta stone of active galactic nuclei deciphered

June 21, 2018

A galaxy with at least one active supermassive black hole – named OJ 287 – has caused many irritations and questions in the past. The emitted radiation of this object spans a wide range – from the radio up to the highest ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

cgsperling
not rated yet Jun 05, 2018
For a clear explanation of the drill problem and solution, see this:
http://www.planet...lem.html

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.