New insights into the contribution of land ice to sea level rise

June 12, 2018, University of Bristol
New insights into the contribution of land ice to sea level rise
Morass of icebergs that have calved off Jakobshaven, the largest glacier in Greenland. Credit: Professor Jonathan Bamber, University of Bristol

A new study led by scientists from the University of Bristol has provided an up-to-date insight into the impact of melting land ice on sea levels.

The new estimate shows there has been a six-fold increase in annual land ice contribution to global from the mid-1990s to the early 2010s.

Land ice describes permanent ice on the surface of the Earth, which comprises the two ice sheets that cover Antarctica and Greenland as well as numerous smaller glaciers and ice caps.

Over the course of the 20th century, melting glaciers and ice caps dominated the overall contribution of land ice to rise.

This has changed over the last few decades due to the accelerating contribution of the Greenland and Antarctic ice sheets. Ice sheets are the largest potential source of future sea level rise and represent the largest uncertainty in projections of future sea level.

This new study, published today in the journal Environmental Research Letters, suggests that for the most recent five-year period (2012-2016), land ice contributed around 1.85 mm per year to global sea level rise. The largest source was Greenland (37 percent of the total, or 0.69 mm per year) followed by glaciers and (34 percent or 0.63 mm per year). Antarctica contributed the remainder, with the vast-majority from West Antarctica (26 percent or 0.48 mm per year).

New insights into the contribution of land ice to sea level rise
A heavily crevassed glacier in Bernese Oberland Switzerland. Credit: Jonathan Bamber, University of Bristol

Since 1992, there has been a revolution in our ability to measure the land ice contribution to sea level rise using satellite observations.

However, different satellite sensors have provided unique and sometimes conflicting results, and as a result the many published estimates of land ice trends have provided a confusing and often inconsistent picture.

The Intergovernmental Panel on Climate Change's (IPCC) Fifth Assessment Report (AR5) attempted to synthesize estimates published up to early 2013.

Since then, considerable advances have been made in understanding the origin of the inconsistencies, reducing uncertainties in estimates and extending time series, yet this study is the first that has attempted to combine post-AR5 estimates in a rigorous and holistic way.

The new estimate draws on published literature, primarily focused on studies published since 2013, expert assessment of that literature, and a new analysis of Arctic glacier and ice cap trends combined with statistical modelling.

Credit: Chart: Richard Westaway Source: Bamber et al (2018)

Lead author Professor Jonathan Bamber from the University of Bristol's School of Geographical Sciences, said: "Our analysis draws on many earlier studies along with new, previously unpublished data and shows that in just over two decades land ice has gone from making a modest contribution to being by far the dominant source of sea level rise.

"It is intended as comprehensive review of our understanding of current land ice trends and their contribution to contemporary sea level rise.

"It is also, as far as we are aware, the first study since IPCC AR5 (published 2014) that has attempted to combine post-AR5 estimates in a rigorous and holistic way. In this sense it should be of considerable interest to the community, providing an updated and extended synthesized estimate of a key component (land-ice) of the sea-level budget."

The authors were funded as part of a five-year European Research Council project, GlobalMass (www.globalmass.eu), which aims to – for the first time at a global scale – rigorously combine satellite and in-situ data related to different aspects of the sea level budget, so that observed sea level rise can be attributed to its component parts.

Explore further: Alarming projections for polar ice sheets

More information: Jonathan L Bamber et al. The land ice contribution to sea level during the satellite era, Environmental Research Letters (2018). DOI: 10.1088/1748-9326/aac2f0

Related Stories

Alarming projections for polar ice sheets

March 2, 2018

Drawing on international research, Professor Tim Naish from Victoria University of Wellington's Antarctic Research Centre took the second Pacific Climate Change Conference, co-hosted by Victoria and the Secretariat of the ...

Melting ice the greatest factor in rising sea levels

July 4, 2012

Melting glaciers and ice sheets have contributed more to rising sea levels in the past decade than expansion from warming water, according to modelling in the latest report by the Antarctic Climate and Ecosystems (ACE) Cooperative ...

How much does groundwater contribute to sea level rise?

May 2, 2016

Groundwater extraction and other land water contribute about three times less to sea level rise than previous estimates, according to a new study published in the journal Nature Climate Change. The study does not change the ...

Recommended for you

New kind of aurora is not an aurora at all

August 20, 2018

Thin ribbons of purple and white light that sometimes appear in the night sky were dubbed a new type of aurora when brought to scientists' attention in 2016. But new research suggests these mysterious streams of light are ...

The bright ways forests affect their environment

August 20, 2018

For decades scientists have tried to understand why forests emit the volatile gases that give pine forests their distinctive smell. A new study led by the University of Leeds may have found the answer.

New study identifies strategies in US climate litigation

August 20, 2018

The courts have played a central role in climate change policy, starting with a landmark Supreme Court case that led to the mandatory regulation of greenhouse gases in the United States. How do the courts address climate ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.