Recombinant E. coli as a biofactory for the biosynthesis of diverse nanomaterials

May 24, 2018, The Korea Advanced Institute of Science and Technology (KAIST)
The biosynthesis of diverse nanomaterials using recombinant E. coli. This schematic diagram shows the overall conceptualization of the biosynthesis of various single and multi-element nanomaterials using recombinant E. coli under incubation with corresponding elemental precursors. The 35 elements that were tested to biosynthesize nanomaterials are shown in black circles on the periodic table. Credit: KAIST

A metabolic research group at KAIST and Chung-Ang University in Korea has developed a recombinant E. coli strain that biosynthesizes 60 nanomaterials covering 35 elements on the periodic table. Among the elements, the team could biosynthesize 33 novel nanomaterials for the first time, advancing the design of nanomaterials through the biosynthesis of single and multiple elements.

The study analyzed the biosynthesis conditions using a Pourbaix diagram to predict the producibility and crystallinity. Researchers studied a Pourbaix diagram to predict the stable chemical species of each element for nanomaterial biosynthesis at varying levels of reduction potential (Eh) and pH. Based on the Pourbaix diagram analyses, the initial pH of the reaction was changed from 6.5 to 7.5, resulting in the biosynthesis of multiple crystalline nanomaterials that were previously amorphous or not synthesized.

This strategy was extended to biosynthesize multi-element nanomaterials. Various single- and multiple-element nanomaterials biosynthesized in this research can potentially serve as new and novel nanomaterials for industrial applications such as catalysts, chemical sensors, biosensors, bioimaging, drug delivery, and cancer therapy.

This study, titled "Recombinant Escherichia coli as a biofactory for various single- and multi- nanomaterials," was published online in the Proceedings of the National Academy of Sciences (PNAS) on May 21.

A recent successful biosynthesis of nanomaterials under mild conditions without requiring physical and chemical treatments has triggered the exploration of the full biosynthesis capacity of a biological system for producing a diverse range of nanomaterials as well as for understanding biosynthesis mechanisms for crystalline versus amorphous nanomaterials.

There has been increased interest in synthesizing various nanomaterials that have not yet been synthesized for various applications including semiconducting materials, enhanced solar cells, biomedical materials, and many others. This research reports the construction of a recombinant E. coli strain that co-expresses metallothionein, a metal binding protein, and phytochelatin synthase that synthesizes the metal-binding peptide phytochelatin for the biosynthesis of various nanomaterials. Subsequently, an E. coli strain was engineered to produce a diverse range of nanomaterials, including those never biosynthesized before, by using 35 individual elements from the periodic table and also by combining multi-elements.

Distinguished Professor Doh Chang Lee said, "An environmentally-friendly and sustainable process is of much interest for producing nanomaterials by not only chemical and physical methods but biological synthesis. Moreover, there has been much attention paid to producing diverse and novel nanomaterials for new industrial applications. This is the first report to predict the biosynthesis of various nanomaterials, by far the largest number of various single- and multi-elements nanomaterials. The strategies used for nanomaterial biosynthesis in this research will be useful for further diversifying the portfolio of nanomaterials that can be manufactured."

Explore further: Course set to overcome mismatch between lab-designed nanomaterials and nature's complexity

More information: Yoojin Choi et al, RecombinantEscherichia colias a biofactory for various single- and multi-element nanomaterials, Proceedings of the National Academy of Sciences (2018). DOI: 10.1073/pnas.1804543115

Related Stories

Ancient ink for cancer treatment

September 27, 2017

For hundreds of years, Chinese calligraphers have used a plant-based ink to create beautiful messages and art. Now, one group reports in ACS Omega that this ink could noninvasively and effectively treat cancer cells that ...

Combining the elements palladium and ruthenium for industry

September 22, 2016

The chemical elements palladium (Pd) and ruthenium (Ru) are both used separately in the chemical industry. For a long time, researchers have thought that combining the two could lead to improved and novel properties for industrial ...

Nanomaterials in our environment

December 15, 2010

The manufacturing of nanomaterials has been steadily on the rise in the medical, industrial, and scientific fields. Nanomaterials are materials that are engineered to have dimensions less than 100 nanometers and have very ...

Recommended for you

Engineers produce smallest 3-D transistor yet

December 10, 2018

Researchers from MIT and the University of Colorado have fabricated a 3-D transistor that's less than half the size of today's smallest commercial models. To do so, they developed a novel microfabrication technique that modifies ...

New traffic rules in 'Graphene City'

December 6, 2018

In the drive to find new ways to extend electronics beyond the use of silicon, physicists are experimenting with other properties of electrons, beyond charge. In work published today (Dec 7) in the journal Science, a team ...

Artificial synapses made from nanowires

December 6, 2018

Scientists from Jülich together with colleagues from Aachen and Turin have produced a memristive element made from nanowires that functions in much the same way as a biological nerve cell. The component is able to save and ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.