Two decades of hurricanes change coastal ecosystems—increase algae blooms, fish kills, dead zones

May 3, 2018 by Cheryl Dybas, National Science Foundation
Hurricane Matthew led to increased nutrients flowing into North Carolina's Neuse River estuary. Credit: NASA

Arthur, Bertha, Fran, Josephine. Ana, Joaquin, Hermine, Matthew—each might be a favorite child's name. But in fact they're terms for something that's far from good news: hurricanes.

All hit the coast of North Carolina between 1996 and 2016, leaving destruction in their wakes. The damage included estuaries flooded with excess nutrients, leading to increased algae blooms, fish kills and .

"In a span of 20 years, coastal North Carolina has been impacted by a major rise in the number of hurricanes, as well as two 500-year flood events: Hurricanes Floyd in 1999 and Matthew in 2016," said Hans Paerl, a scientist at the University of North Carolina at Chapel Hill. "But the trend isn't limited to North Carolina. It extends throughout the U.S. North Atlantic and Pacific Ocean basins."

North Carolina's hurricanes, including Harvey, Irma and Maria in 2017, likely reflect an overall increase in Category 2 and higher storms, state Paerl and colleagues in a recently published paper in the journal Biogeochemistry.

Storm warning: North Carolina's Neuse River estuary

The scientists set out to chronicle how two decades of hurricanes have affected the second-largest in the U.S.: North Carolina's Neuse River, which flows into Pamlico Sound. The National Science Foundation (NSF) supported the research through its Biological Oceanography and Chemical Oceanography programs, including a rapid response grant awarded after Hurricane Matthew in 2016.

The coastal impacts from Hurricane Matthew were so large they could be seen from space. Credit: M.L. Parker, UNC-Chapel Hill
"One manifestation of climate change may be a higher frequency of storms," said David Garrison, a program director in NSF's Division of Ocean Sciences. "This study provides valuable insights into how coastal estuaries will be affected."

Added Paerl, "Understanding how an increase in extreme events such as hurricanes affects is critical to preparing for a stormier future."

Along with scientist Christopher Osburn at North Carolina State University and other colleagues, Paerl used a long-term dataset to find out how hurricanes have affected the flow of nutrients into the Neuse River estuary and Pamlico Sound. The team tracked changes in populations of phytoplankton—the base of the food web—and in fisheries habitats.

During Hurricane Matthew, floodwaters washed material on land into the Neuse River estuary. Credit: B. Abare, UNC-Chapel Hill
Long-term observations needed

Since 1994, the Neuse River has been the site of a long-term water quality and habitat assessment effort: the Neuse River Estuary Modeling and Monitoring Program. In 2000, scientists expanded the research, placing sensors on ferries that crisscross Pamlico Sound. These projects, said Paerl, "provided baseline data against which we assessed short-term [two-week] and longer-term [several-month] changes that resulted from hurricanes."

The effects on coastal watersheds were clear from satellite images obtained before and after the storms' passage, according to Paerl.

Impacts included increased freshwater flow, flooding and erosion, and huge inputs of nutrients and organic matter from wetlands and marshes. Organic matter encompasses everything from lawn clippings, leaves, corn stalks and straw to manure, sludge, wood and food processing wastes.

Nutrients in hurricane floodwaters lead to algae blooms like the one pictured here. Credit: Pamlico Riverkeeper, Heather Deck
Hurricanes, coastal dead zones and climate

Organic matter that washes into the Neuse River estuary is converted into carbon dioxide (CO2) by bacteria, then released into the atmosphere. During Hurricane Irene in 2011, a Category 2 storm, as much CO2 was vented to the atmosphere as is taken up each year by Pamlico Sound's phytoplankton.

"Hurricanes lead to large discharges of nutrients and organic matter from watersheds," says Paerl. "These nutrients are then shunted to coastal waters, changing the biogeochemistry of coastal ecosystems."

Higher levels of nutrients led to algae blooms and low-oxygen bottom waters in the Neuse River estuary and Pamlico Sound. Fish and shellfish die-offs signaled developing dead zones.

After hurricanes, scientists took samples of flooded rivers to see how the waterways had changed. Credit: Christopher Osburn
"Large amounts of floodwater and organic matter created fuel for developing 'dead zones' throughout the estuary," said Paerl. "In the discharges after Hurricanes Floyd and Matthew, these dead zones grew large enough to affect shellfish and finfish habitats for miles." Fish kills lasted for months.

Understanding how coastal ecosystems respond to hurricanes and other major storms, including nor'easters and severe thunderstorms, said Paerl, "is important at a time when such extreme weather events are becoming more frequent and intense."

This big-picture look at the effects of hurricanes on estuaries also indicates that the increased CO2 in coastal waters may have an effect on climate. "The impacts of these infrequent but significant pulses of nutrients into sensitive coastal ecosystems have been mostly unknown," said Paerl.

Ophelia and Beryl, Earl and Ernesto: hurricanes that have hit the North Carolina coast since 2005. What will the next hurricanes be named? And how will the Neuse River estuary and Pamlico Sound—and marine ecosystems up and down the U.S. East Coast—weather the storms? Paerl, Osburn and other researchers are slogging through miles of debris to uncover the answers.

Explore further: Researchers use genes as early warning system for harmful algae blooms

Related Stories

Double trouble for water life

May 18, 2009

Excess phosphorus and nitrogen produced by human activities on neighboring land is making its way into our coastal waters and degrading both water quality and aquatic life. Although historically the priority has been to control ...

US forecasts 'near-normal' hurricane season

May 27, 2016

The coming Atlantic hurricane season is forecast to be "near-normal," after three years of unusually low storm activity due in part to the El Nino ocean warming trend, US government scientists said Friday.

Recommended for you

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.