Neuropeptide controls roundworms' backward movement

April 30, 2018, Society for Neuroscience

A study of genetically diverse worms finds that the length of their backward movement is under the control of a small protein called a neuropeptide that fluctuates in response to food availability. The research, published in JNeurosci, demonstrates genetic and environmental influences on an animal's exploration of its environment.

The roundworm Caenorhabditis elegans moves forward and backward in the shape of a sine wave. A longer backward movement, or reversal, increases the likelihood that the worm will change directions to navigate, for example, toward a food source. How the C. elegans nervous system regulates reversal length has been elusive.

Kavita Babu and colleagues examined strains of C. elegans that differed in their expression of the neuropeptide FLP-18 and its receptors, NPR-4 and NPR-1, and found that this neuropeptide controls reversal length by regulating a circuit that involves and interneurons. Starving the worms for 24 hours increased levels of FLP-18 and resulted in shorter reversal lengths, reducing the probability that they would change direction. This may represent a strategy that enables the worm to explore a larger area for food during periods of extreme hunger.

A study of genetically diverse worms finds that the length of their backward movement is under the control of a small protein called a neuropeptide that fluctuates in response to food availability. Credit: Kavita Babu

Explore further: A brain chemical blamed for mental decline in old age could hold key to its reversal

More information: JNeurosci (2018). DOI: 10.1523/JNEUROSCI.1955-17.2018

Related Stories

Analyzing a worm's sleep

August 19, 2016

Elephants, cats, flies, and even worms sleep. It is a natural part of many animals' lives. New research from Caltech takes a deeper look at sleep in the tiny roundworm Caenorhabditis elegans, or C. elegans, finding three ...

Researchers provide first peek at how neurons multitask

November 6, 2014

Researchers at the University of Michigan have shown how a single neuron can perform multiple functions in a model organism, illuminating for the first time this fundamental biological mechanism and shedding light on the ...

Recommended for you

How human brains became so big

May 23, 2018

The human brain is disproportionately large. And while abundant grey matter confers certain intellectual advantages, sustaining a big brain is costly—consuming a fifth of energy in the human body.

Rehabilitating lactate: From poison to cure

May 23, 2018

George Brooks has been trying to reshape thinking about lactate—in the lab, the clinic and on the training field—for more than 40 years, and finally, it seems, people are listening. Lactate, it's becoming clear, is not ...

Chimpanzee calls differ according to context

May 23, 2018

An important question in the evolution of language is what caused animal calls to diversify and to encode different information. A team of scientists led by Catherine Crockford of the Max Planck Institute for Evolutionary ...

How a cell knows when to divide

May 23, 2018

How does a cell know when to divide? We know that hundreds of genes contribute to a wave of activity linked to cell division, but to generate that wave new research shows that cells must first grow large enough to produce ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.