Record breaking fiber transmission speed reported

April 16, 2018 by Sachiko Hirota, National Institute of Information and Communications Technology
Fig.1: Schematic diagram of the transmission system. Credit: National Institute of Information and Communications Technology

NICT Network System Research Institute and Fujikura Ltd. (Fujikura, President: Masahiko Ito) developed a 3-mode optical fiber, capable of wide-band wavelength multiplexing transmission with standard outer diameter (0.125 mm) that can be cabled with existing equipment. The researchers have successfully demonstrated a transmission experiment over 1045 km with a data-rate of 159 Tb/s. Multimode fibers have different propagation delays between optical signals in different modes that makes it difficult to simultaneously satisfy large data-rates and long distance transmission. This achievement shows that such limitations may be overcome.

Converting the results to the product of data-rate and distance, which is a general indicator of transmission capability, results in 166 Pb/s×km. This is the world record in a standard outer diameter few-mode and the largest data-rate over 1000 km for any kind of standard-diameter fiber. In order to achieve the transmission capacity of 159 Tb/s, mode multiplexing is used in combination with 16-QAM (quadrature-amplitude modulation), which is a practical high-density multilevel modulation optical signal, for all 348 wavelengths and MIMO (multiple-input and multiple-output) enables unscrambling of mixed modal signals even after transmission over more than 1000 km. This shows that standard outer diameter multimode fibers can be used for communication of high capacity optical backbone transmission systems.

The results of this demonstration were selected for presentation as a post-deadline paper at the 41st Optical Fiber Communication Conference and Exhibition (OFC2018).

In order to cope with ever-increasing communication traffic, research on large-scale optical transmission using new types of optical fiber exceeding the limit of conventional optical fiber and its application is actively conducted all over the world. The main new types of optical fibers studied are multicore fibers in which multiple passages (cores) are arranged in an optical fiber and multimode fibers that support multiple propagation modes in a single core with a larger core diameter. Up to now, successful transmission experiments of large capacity and long distance have been reported for multicore fiber, but it was considered that transmission which satisfied both large capacity and long distance simultaneously was difficult in multimode fiber.

Record breaking fiber transmission speed reported
Fig.2: Experimental results. Credit: National Institute of Information and Communications Technology

In this work, NICT constructed a transmission system using an optical fiber developed by Fujikura and successfully transmitted over 1045 km with a data-rate of 159 Tb/s (Fig. 1). Converting the results to the product of transmission data-rate and distance, which is a general indicator of transmission capability, is 166 Pb/s×km. This is about twice the world record so far in the few-mode fibers.

The transmission system consists of the following element technologies.

  • 3-mode optical fiber with standard outer diameter 0.125 mm
  • 348 wavelength optical comb light source
  • 16-QAM multi-level modulation technology equivalent to 4 bits / single polarization symbol
  • Separation technology of multimode optical signals with different propagation speeds in fiber (MIMO processing)

The researchers succeeded in transmitting over 1045 km using a standard 3-mode optical fiber. When laying of standard outer diameter optical fibers takes place, the existing equipment can be used and the practical use at an early stage is promising. Also, ultimate large-capacity will become possible in the future if combined with multicore technology, which is researched by NICT in cooperation with industry, university and government in Japan.

The researchers will continue to research and develop future optical communication infrastructure technologies which can smoothly accommodate traffic such as big data and 5G network services.

Explore further: Hundredfold optical fiber capacity increase sends thousands of HDTV videos per second

More information: 159 Tbit/s C+L Band Transmission over 1045 km 3-Mode Graded-Index Few-Mode Fiber. Proc. 41st Optical Fiber Communication Conference and Exhibition (OFC), March 2018, paper Th4C.4.

Provided by: National Institute of Information and Communications Technology


Related Stories

Fiber Optical Transmission In Demand Of Higher Capacity

April 2, 2010

( -- With the increasing high volume content over the internet, such as multimedia and high definition images, new transmission methods need to be found to handle the increasing data demand. Nippon Telegraph and ...

Recommended for you

Balancing nuclear and renewable energy

April 25, 2018

Nuclear power plants typically run either at full capacity or not at all. Yet the plants have the technical ability to adjust to the changing demand for power and thus better accommodate sources of renewable energy such as ...

Researchers 3-D print electronics and cells directly on skin

April 25, 2018

In a groundbreaking new study, researchers at the University of Minnesota used a customized, low-cost 3D printer to print electronics on a real hand for the first time. The technology could be used by soldiers on the battlefield ...

Electrode shape improves neurostimulation for small targets

April 24, 2018

A cross-like shape helps the electrodes of implantable neurostimulation devices to deliver more charge to specific areas of the nervous system, possibly prolonging device life span, says research published in March in Scientific ...

China auto show highlights industry's electric ambitions

April 22, 2018

The biggest global auto show of the year showcases China's ambitions to become a leader in electric cars and the industry's multibillion-dollar scramble to roll out models that appeal to price-conscious but demanding Chinese ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.