Artificial leaf as mini-factory for medicine

April 24, 2018, Eindhoven University of Technology
Even with the naked eye the amount of light captured by the 'mini-factories' is visible, lit up bright red. The 'veins' through the leaves are the thin channels through which liquid can be pumped. The start products enter the one channel, light causes the reactions and the end product comes out via the other channels. Credit: Bart van Overbeeke

Using sunlight for sustainable and cheap production of, for example, medicines. The 'mini-factory' in the form of a leaf that chemical engineers from Eindhoven University of Technology presented in 2016 showed that it is possible. Now the researchers have come with an improved version: their 'mini-factory' is now able to keep production at the same level, irrespective of the variation in sunlight due to cloudiness or time of the day. As a result, this boosts the average yield by about 20%. This is due to a clever feedback system costing less than 50 euros that automatically slows down or speeds up production. This has removed a significant practical barrier for green reactors that operate purely on sunlight.

With their 'artificial leaf' researchers, under the guidance of the Eindhoven chemical engineer Timothy Noël, reaped a lot of admiration about a year and a half ago. First they succeeded in making possible with - something that had previously seemed almost impossible. Chemists had dreamed of this possibility for ages, but the problem was that the amount of sunlight was not sufficient.

Their breakthrough can be partly attributed to the use of relatively new materials (so-called ) that seal in a specific part of the sunlight inside, in a similar way to plants that do this using special antenna molecules in their leaves. The second discovery was to apply very thin channels in these materials, through which liquids are pumped thereby exposing the liquids to sufficient sunlight to allow chemical reactions to take place. The end products then flow out at the extremities of the channels.

Problem: not always the same amount of sun

One of the biggest practical problems to apply this on a large scale is that there is not always the same intensity of sunlight. Because, for example, the sky is cloudy or the sunlight varies in intensity and composition during the day. "If there is too much light, you get unwanted by-products and if there is too little light, the reactions do not take place or do so too slowly," Noël explains. "Ideally, the system should automatically adapt to the amount of incoming sunlight."

The project involved a diversity of disciplines, from photo catalysis and material science to engineering and microreactors. Credit: Bart van Overbeeke

The feedback system developed does exactly that. It consists of just three relatively simple elements. A light sensor measures the amount of light that reaches the channels. A microcontroller translates this signal to a pump speed. And the pump drives the fluids through the channels at that speed. All this costs less than 50 euros. Experiments to determine the required pump speed for a specific light intensity enabled the researchers to optimize the .

Test on the roof

In addition to lab testing under artificial light, they also tested their system outdoors in natural sunlight, on top of the roof of one of the buildings on the TU/e campus. At a yield setting of 90%, the system kept production stable for an hour at between 86% and 93%. The same system without feedback looping varied significantly between 55% and 97%. The was increased by about 20% thanks to the feedback loop.

According to Noël, this brings a cheap and sustainable reactor considerably closer to being able to produce chemical products on a large scale, wherever you want, with only sunlight as an energy source. "It is inevitable that energy prices will rise. And with a source of energy like the sun that is free and available, these kinds of technological solutions can make the difference."

Explore further: Artificial leaf as mini-factory for drugs

More information: Fang Zhao et al, Real-time reaction control for solar production of chemicals under fluctuating irradiance, Green Chemistry (2018). DOI: 10.1039/c8gc00613j

Related Stories

Artificial leaf as mini-factory for drugs

December 21, 2016

Using sunlight to make chemical products has long been a dream of chemical engineers. The problem is that the available sunlight generates too little energy to kick off reactions. However, nature is able to do this. Antenna ...

Research sheds new light on improving rice yields

March 26, 2018

Light is essential for plant growth but getting the right amount for crops out in the field at the mercy of the climate is very difficult, now plant scientists have found a way to tackle this with the help of a protein that ...

Light and air: Sunlight-driven CO2 fixation

November 19, 2012

(Phys.org)—The increased use of renewable energy sources, particularly sunlight, is highly desirable, as is industrial production that is as CO2-neutral as possible. Both of these wishes could be fulfilled if CO2 could ...

Recommended for you

Engineering cellular function without living cells

March 25, 2019

Genes in living cells are activated – or not – by proteins called transcription factors. The mechanisms by which these proteins activate certain genes and deactivate others play a fundamental role in many biological processes. ...

What ionized the universe?

March 25, 2019

The sparsely distributed hot gas that exists in the space between galaxies, the intergalactic medium, is ionized. The question is, how? Astronomers know that once the early universe expanded and cooled enough, hydrogen (its ...

Catalyst advance removes pollutants at low temperatures

March 25, 2019

Researchers at Washington State University, University of New Mexico, Eindhoven University of Technology, and Pacific Northwest National Laboratory have developed a catalyst that can both withstand high temperatures and convert ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.