Powerful new device for studying puzzling process

March 15, 2018 by John Greenwald, Princeton Plasma Physics Laboratory
New FLARE device for studying magnetic reconnection. Credit: Larry Bernard

A millisecond burst of light on a computer monitor signaled production of the first plasma in a powerful new device for advancing research into magnetic reconnection—a critical but little understood process that occurs throughout the universe. The first plasma, a milestone event signaling the beginning of research capabilities, was captured on camera on Sunday, March 5, at 8:13 p.m. at Jadwin Hall at Princeton University, and marked completion of the four-year construction of the device, the Facility for Laboratory Reconnection Experiment (FLARE).

Magnetic reconnection, the breaking apart and explosive recombination of the in hot plasma—the fourth state of matter composed of free electrons and atomic nuclei that makes up 99 percent of the visible universe—has impact throughout the cosmos. Reconnection gives rise to Northern Lights, solar eruptions and geomagnetic storms that can disrupt electrical networks and signal transmissions such as . In laboratories where scientists are trying to create a "star on earth," the process can degrade and even disrupt fusion experiments.

More powerful version of MRX

FLARE represents a more powerful version of the Magnetic Reconnection Experiment (MRX) at the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL). The new facility is twice the diameter of the sport utility vehicle-sized MRX and features significantly increased research capabilities. For example, measurements of the Lundquist number, a parameter critical to the study of the puzzlingly rapid rate of reconnection, will be an order of magnitude greater in FLARE than in MRX.

Such capabilities "will enable a more faithful representation of the that occurs in nature throughout the universe," said Hantao Ji, a Princeton professor of astrophysical sciences and also a PPPL physicist, who is principal investigator for the construction project and is proposing the subsequent FLARE research. "We will have more access to the large-scale working of the process through laboratory experiments."

Some members of the FLARE team. Front row from left: Guy Rossi, Kris Gilton, Lauren Callahan, Bill Dix. Second row from left: Tom Kozub, Ted Lewis, Jongsoo Yoo, Bob Cutler, Jonathan Jara-Almonte, Jim Kukon, Darryl Johnson, Hantao Ji. Third row from left: Mike Kalish, Julio Lopez, Matt Komor, Frank Hoffman, Aaron Goodman, Peter Sloboda, Geoff Gettlefinger. Credit: Larry Bernard

Explore further: Plasma bubbles help trigger massive magnetic events in outer space

Related Stories

Team produces unique simulation of magnetic reconnection

September 8, 2017

Jonathan Ng, a Princeton University graduate student at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL), has for the first time applied a fluid simulation to the space plasma process behind ...

Plasma from lasers can shed light on cosmic rays, solar eruptions

November 10, 2017

Lasers that generate plasma can provide insight into bursts of subatomic particles that occur in deep space, scientists have found. Such findings could help scientists understand cosmic rays, solar flares and solar eruptions—emissions ...

Recommended for you

A novel topological insulator

October 12, 2018

For the first time, physicists have built a unique topological insulator in which optical and electronic excitations hybridize and flow together. They report their discovery in Nature.

'Fudge factors' in physics?

October 11, 2018

Science is poised to take a "quantum leap" as more mysteries of how atoms behave and interact with each other are unlocked.

Disorder induces topological Anderson insulator

October 11, 2018

Topological insulators (TIs) host exotic physics that could shed new light on the fundamental laws of nature. What's more, the unusual properties of TIs hold tremendous promise for technological applications, including in ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.