Femtosecond laser fabrication—realizing dynamics control of electrons

March 28, 2018, Changchun Institute of Optics, Fine Mechanics and Physics
Schematic diagram of the idea of Electrons Dynamics Control. Credit: Lan Jiang, An-Dong Wang, Bo Li, Tian-Hong Cui & Yong-Feng Lu. Electrons dynamics control by shaping femtosecond laser pulses in micro/nanofabrication: modeling, method, measurement and application. Light: Science & Applications volume 7, 17134 (2018)doi:10.1038/lsa.2017.134

Femtosecond lasers are capable of processing any solid material with high quality and high precision using their ultrafast and ultra-intense characteristics. With the continuous development of laser technology, ultrafast laser manufacturing could become one of the primary methods employed in high-end manufacturing in the future.

Recently, researchers have realized a new method of electron dynamics control for ultrafast laser micro/nano fabrication. For the first time, the localized transient electron dynamics can be actively controlled to manipulate , which greatly enhances the efficiency, quality, uniformity and precision of laser fabrication.

This research was conducted by the group of Professor Lan Jiang from Beijing Institute of Technology, in cooperation with Professor Tian-Hong Cui from the University of Minnesota, and Professor Yongfeng Lu from the University of Nebraska–Lincoln. Their research results were recently reviewed in Light: Science and Applications.

Over the past decade, the research group has devoted their efforts to studying novel methods of manufacturing based on electron dynamics control. They used the temporally/spatially-shaped ultrafast laser to control localized transient electron dynamics (e.g., density, temperature, and distribution); furthermore, they modified the localized transient material properties and adjusted material phase change; eventually, they implemented the novel fabrication method.

They established a multiscale model of ultrafast laser interactions and predicted that the temporally/spatially-shaped ultrafast pulses can control the laser material interaction processes. Furthermore, on the basis of the theoretical predictions, they experimentally verified the validity of the electron dynamics control method. In addition, they proposed and implemented a multiscale measurement system for observing femtosecond laser ablation dynamics from femtosecond scale to second scale, which provided experimental evidences for the proposed mechanism.

Using this method, they greatly improved fabrication efficiency, quality, repeatability and precision, and extended the fabrication limits of laser manufacturing. The new method has resolved some critical manufacturing challenges and already been applied to a series of major Chinese national projects. This novel realizes the active control of localized transient in the fabrication process for the first time. Furthermore, it opens wide possibilities for the control of fabrication on the electron level, which may provide revolutionary contributions to high-end manufacturing, material properties manipulation, and chemical reactions .

Explore further: Controlling spin for memory storage

More information: Lan Jiang et al, Electrons dynamics control by shaping femtosecond laser pulses in micro/nanofabrication: modeling, method, measurement and application, Light: Science & Applications (2018). DOI: 10.1038/lsa.2017.134

Related Stories

Controlling spin for memory storage

December 7, 2017

Tohoku University researchers have developed a computational simulation that shows that using ultrafast laser pulses to excite electrons in a magnetic material switches them into a transient non-magnetic state. This could ...

A milestone in petahertz electronics

March 13, 2018

In a semiconductor, electrons can be excited by absorbing laser light. Advances in the past decade have enabled measuring this fundamental physical mechanism on timescales below a femtosecond (10-15 s). Now, physicists at ...

Electrons fingerprint the fastest laser pulses

September 8, 2016

Analyzing ultrafast chemical processes requires ultrafast lasers—light pulses lasting for mere attoseconds (10-18 second)—to act as a "stop-motion" strobe camera. Physicists at the University of Nebraska-Lincoln are analyzing ...

The first optically synchronised free-electron laser

January 30, 2015

Scientists at DESY have developed and implemented an optical synchronisation system for the soft X-ray free-electron laser FLASH, achieving facility-wide synchronisation with femtosecond precision. The performance of the ...

Researchers learn to control graphene with lasers

June 3, 2015

New numerical simulations by Berkeley Lab Alvarez Fellow Alexander Kemper and his colleagues at Stanford University reveal how the quantum properties of graphene can be manipulated at ultrafast timescales with femtosecond ...

Recommended for you

Entanglement observed in near-macroscopic objects

April 25, 2018

Perhaps the strangest prediction of quantum theory is entanglement, a phenomenon whereby two distant objects become intertwined in a manner that defies both classical physics and a common-sense understanding of reality. In ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.