Earwigs and the art of origami

March 22, 2018 by Peter Rüegg, ETH Zurich
The wing of the earwig is an ingenious origami. Credit: Jakob Faber / ETH Zurich

ETH Zurich researchers have developed multifunctional origami structures, which they then fabricated into 4-D printed objects. The design principle mimics the structure of an earwig's wing.

Every child knows about . The skill of this oriental art lies in folding a flat sheet of paper into different - and in some cases highly complex - structures. Examples of origami also exist in the natural world. The wing of an earwig is a perfect illustration: its elaborate design is far more ingenious than any manmade structure.

When open, the earwig wing expands ten times larger than when closed - one of the highest folding ratios in the animal kingdom. The large wing area allows the insect to fly, while the compact way the wings retracts enables the creature to tunnel underground without damaging its wings.

The wing design has another unique feature; however, in its open, locked state the wing remains stiff with no need for muscle power to provide stability. With just one "click", the wing folds into itself completely, without muscular actuation.

Simulation brings a breakthrough

Researchers at ETH Zurich and Purdue University have been studying the secret of the earwig's origami-like wings and have created an artificial structure that functions on the same principle. Their paper has just appeared in the journal Science.

To analyse the wing structure and function, the study's lead author, Jakob Faber from the research group led by André Studart, Professor for Complex Materials at ETH Zurich, in collaboration with Prof. Andres Arrieta of Purdue University performed a computer simulation of the wing's function.

This showed that if the wing were to operate on the classical origami principle - using rigid, straight folds with an angular sum of 360 degrees at their intersections - the earwig would only be able to fold its wing down to a third of its size. The crucial factor in the design of the insect's wing is its elastic folds, which can operate either as an extensional or rotational spring.

The wing joints are made from layers of a special elastic biopolymer, resilin, whose arrangement and thickness determines the spring type. In some instances, both extensional and rotational functions are combined in the same joint.

Faber and his colleagues also examined the point in the earwig's wing that is responsible for stability in both the open and closed state: the central mid-wing joint. At this point, the folds intersect at angles that are incompatible with rigid origami theory. "This point locks the wing in place in both its open and closed state," Faber stresses.

4D printed object

The researchers transferred the findings of the computer simulations to a multi-material 3D printer. This allowed them to directly manufacture a 4D object comprising four stiff plastic plates connected to each other by a soft elastic joint. The spring functions of the connecting folds were programmed into the material to enable them to perform extensional or rotational movements, mimicking the biological model.

The insect's wing is stable when open, but folds together automatically on even the lightest touch.

In the next step, the researchers transferred the principle to larger elements and printed a spring origami gripper. This self-folds, locks and is then able to grip objects without the need for external actuation.

The 3-D-printed imitation of the earwig wing can be folded as compact as its natural counterpart. However, the automatic folding function so far only works in the simplified prototypes. Credit: ETH Zurich

Applications for space travel

Faber's 3D printed, self-folding origami elements are currently only available as prototypes. One potential application might be foldable electronics. Another area is space travel: solar sails for satellites or space probes that could be transported within a very small space and then unfurled to their full size at their place of use. Self-locking bioinspired origami structures like the earwig would save space, weight and energy, as they do not require any actuators or additional stabilisers.

ETH researchers can also imagine more mundane uses, such as foldable tents, maps or package inserts. "Once you've unfolded these things, it's often impossible to fold them back to their original shape. If, on the other hand, they simply refolded automatically, this would save a lot of hassle," says Faber, with a playful look.

Explore further: Origami-inspired self-locking foldable robotic arm

More information: Jakob A. Faber et al, Bioinspired spring origami, Science (2018). DOI: 10.1126/science.aap7753

Related Stories

Origami-inspired self-locking foldable robotic arm

March 15, 2018

A research team of Seoul National University led by Professor Kyu-Jin Cho has developed an origami-inspired robotic arm that is foldable, self-assembling and also highly-rigid. (The researchers include Suk-Jun Kim, Dae-Young ...

Scientists lay out why some origami won't fold under pressure

January 4, 2018

Scientists and engineers are fascinated by self-folding structures. Imagine the possibilities: heart stents that unfold in the right location or pop-up tents that assemble at the press of a button, as well as nanoscale versions ...

Unfolding the folding mechanism of ladybug wings

May 15, 2017

Japanese scientists have figured out how ladybugs fold their wings by transplanting a transparent artificial wing onto the insect and observing its underlying folding mechanism. The study's findings, which help explain how ...

New software speeds origami structure designs

October 11, 2017

Researchers at Georgia Institute of Technology have developed a new computer-aided approach that streamlines the design process for origami-based structures, making it easier for engineers and scientists to conceptualize ...

Recommended for you

How social networking sites may discriminate against women

April 20, 2018

Social media and the sharing economy have created new opportunities by leveraging online networks to build trust and remove marketplace barriers. But a growing body of research suggests that old gender and racial biases persist, ...

Virtually modelling the human brain in a computer

April 19, 2018

Neurons that remain active even after the triggering stimulus has been silenced form the basis of short-term memory. The brain uses rhythmically active neurons to combine larger groups of neurons into functional units. Until ...

'Poker face' stripped away by new-age tech

April 14, 2018

Dolby Laboratories chief scientist Poppy Crum tells of a fast-coming time when technology will see right through people no matter how hard they try to hide their feelings.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.