Researchers bring high-res magnetic resonance imaging to nanometer scale

A new technique that brings magnetic resonance imaging to the nanometer scale with unprecedented resolution will open the door for major advances in understanding new materials, virus particles and proteins that cause diseases like Parkinson's and Alzheimer's. Researchers at the Institute for Quantum Computing at the University of Waterloo used a new type of hardware and numerical algorithms to implement high-precision spin control, which allowed them to image proton spins with a resolution below 2nm.

Traditional MRI revolutionized medical imaging and transformed our understanding of the structure and function of biological systems, but it is limited to millimetre resolution.

"This work extends the powerful capabilities of MRI to the nanometer scale and provides a whole new lens with which to view the structure and function of complex biomolecules," said Raffi Budakian, lead investigator on the paper and a professor in the Department of Physics and Astronomy at Waterloo.

The current work extends the capabilities of Magnetic Resonance Force Microscopy (MRFM)—an ultra-sensitive technique for MRI—by combining it with the ability to precisely control atomic spins.

"Now that we have a high degree of control on the spins, we can also apply the well-developed MRI techniques on an extremely small scale," said Budakian. "We now have unprecedented access to understanding complex biomolecules."

The paper appears in Physical Review X.


Explore further

A new paradigm for nanoscale resolution MRI has been experimentally achieved

Journal information: Physical Review X

Citation: Researchers bring high-res magnetic resonance imaging to nanometer scale (2018, February 21) retrieved 19 June 2019 from https://phys.org/news/2018-02-high-res-magnetic-resonance-imaging-nanometer.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.
13 shares

Feedback to editors

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more