Neutrons track quantum entanglement in copper elpasolite mineral

December 21, 2017 by Jeremy Rumsey, Oak Ridge National Laboratory
Georgia Tech’s Martin Mourigal (left) and Xiaojian Bai (right), along with Florida State University’s Lianyang Dong (center), explore low-temperature quantum states in the mineral Cu-Elpasolite at HFIR beam line HB-2A. Credit: ORNL/Genevieve Martin

A research team including Georgia Institute of Technology professor Martin Mourigal used neutron scattering at Oak Ridge National Laboratory to study copper elpasolite, a mineral that can be driven to an exotic magnetic state when subjected to very low temperatures and a high magnetic field.

A better understanding of the mineral's magnetic moments and the associated quantum coherence effects could lead to new applications in spintronic devices and quantum computing technologies.

"Studying the behavior of magnetic materials in extreme conditions such as very and high magnetic fields is important to obtain a better fundamental understanding of quantum , and to write the basic dictionary relating their microscopic structure to human-scale properties," Mourigal said.

To reveal the material's magnetic structure, the team used the Neutron Powder Diffractometer and Polarized Triple Axis Spectrometer instruments at ORNL's High Flux Isotope Reactor—a DOE Office of Science User Facility.

Neutrons are well suited for investigating given their sensitivity to the organization and dynamics of electrons' spins at the microscopic scale.

"The goal of this experiment was to understand the magnetic structure of the material below its 700 mK [millikelvins] transition," Mourigal explained. "We know that spins talk to each other, but we don't know what organized pattern they collectively choose or why."

The researchers, led by project leader Art Ramirez at the University of California, Santa Cruz, recently published the results of their experiment in Nature Physics. The mineral sample was synthesized by Florida State University graduate student Lianyang Dong.

Explore further: Neutrons reveal suppression of magnetic order in pursuit of a quantum spin liquid

More information: N. Blanc et al, Quantum criticality among entangled spin chains, Nature Physics (2017). DOI: 10.1038/s41567-017-0010-y

Related Stories

Stirring up a quantum spin-liquid with disorder

December 13, 2017

Disorder is generally thought to be detrimental to creating materials with unusual magnetism or other quantum phenomena. However, a team found that weak disorder surprisingly stabilizes a rare quantum state called a quantum ...

Neutrons zero in on the elusive magnetic Majorana fermion

June 8, 2017

Neutron scattering has revealed in unprecedented detail new insights into the exotic magnetic behavior of a material that, with a fuller understanding, could pave the way for quantum calculations far beyond the limits of ...

High field magnet at BER II: Insight into a hidden order

October 20, 2017

A specific uranium compound has puzzled researchers for thirty years. Although the crystal structure is simple, no one understands exactly what is happening once it is cooled below a certain temperature. Apparently, a 'hidden ...

Recommended for you

Understanding the building blocks for an electronic brain

October 22, 2018

Computer bits are binary, with a value of zero or one. By contrast, neurons in the brain can have many internal states, depending on the input that they receive. This allows the brain to process information in a more energy-efficient ...

Researchers study interactions in molecules using AI

October 19, 2018

Researchers from the University of Luxembourg, Technische Universität Berlin, and the Fritz Haber Institute of the Max Planck Society have combined machine learning and quantum mechanics to predict the dynamics and atomic ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.