ESO's VLT working as 16-meter telescope for first time

February 13, 2018, ESO
The ESPRESSO instrument on ESO's Very Large Telescope in Chile has used the combined light of all four of the 8.2-meter Unit Telescopes for the first time. Combining light from the Unit Telescopes in this way makes the VLT the largest optical telescope in existence in terms of collecting area. This picture shows in highly simplified form how the light collected by all four VLT Unit Telescopes is combined in the ESPRESSO instrument, located under the VLT platform. Credit: ESO/L. Calçada

The ESPRESSO instrument on ESO's Very Large Telescope in Chile has used the combined light of all four of the 8.2-meter Unit Telescopes for the first time. Combining light from the Unit Telescopes in this way makes the VLT the largest optical telescope in existence in terms of collecting area.

One of the original design goals of ESO's Very Large Telescope (VLT) was for its four Unit Telescopes (UTs) to work together to create a single giant . With the first light of the ESPRESSO spectrograph using the four-Unit-Telescope mode of the VLT, this milestone has now been reached.

After extensive preparations by the ESPRESSO consortium (led by the Astronomical Observatory of the University of Geneva, with the participation of research centres from Italy, Portugal, Spain and Switzerland) and ESO staff, ESO's Director General Xavier Barcons initiated this historic astronomical observation with the push of a button in the control room.

ESPRESSO instrument scientist at ESO, Gaspare Lo Curto, explains the historical significance of this event: "ESO has realised a dream that dates back to the time when the VLT was conceived in the 1980s: combining the light of all four Unit Telescopes on Cerro Paranal to feed a single instrument!"

When all four 8.2-metre Unit Telescopes combine their light-collecting power to feed a single instrument, the VLT effectively becomes the largest optical telescope in the world in terms of collecting area.

Two of the main scientific goals of ESPRESSO are the discovery and characterisation of Earth-like planets and the search for possible variability of the fundamental constants of physics. The latter experiments in particular require the observation of distant and faint quasars, and this science goal will benefit the most from combining the light from all four Unit Telescopes in ESPRESSO. Both rely on the ultra-high stability of the instrument and an extremely stable reference light source.

Due to the complexity involved, the combination of light from all four Unit Telescopes in this way, at what is known as an "incoherent focus", had not been implemented until now. However, space for it was built into the telescopes and the underground structure of the mountaintop from the start.

A system of mirrors, prisms and lenses transmits the light from each VLT Unit Telescope to the ESPRESSO spectrograph up to 69 metres away. Thanks to these complex optics, ESPRESSO can either collect the light from up to all four Unit Telescopes together, increasing its light-gathering power, or alternatively receive light from any one of the Unit Telescopes independently, allowing for more flexible usage of observing time. ESPRESSO was specially developed to exploit this infrastructure.

Light from the four Unit Telescopes is routinely brought together in the VLT Interferometer for the study of extremely fine detail in comparatively bright objects. But interferometry, which combines the beams "coherently", cannot exploit the huge light-gathering potential of the combined telescopes to study faint objects.

Project Scientist Paolo Molaro comments: "This impressive milestone is the culmination of work by a large team of scientists and engineers over many years. It is wonderful to see ESPRESSO working with all four Unit Telescopes and I look forward to the exciting science results to come."

Feeding the combined light into a single instrument will give astronomers access to information never previously available. This new facility is a game changer for astronomy with high-resolution spectrographs. It makes use of novel concepts, such as wavelength calibration aided by a laser frequency comb, providing unprecedented precision and repeatability, and now the capability to join together the -collecting power of the four individual Unit Telescopes.

"ESPRESSO working with all four Unit Telescopes gives us an enticing foretaste of what the next generation of telescopes, such as ESO's Extremely Large Telescope, will offer in a few years," concludes ESO's Director General, Xavier Barcons.

Explore further: First light for ESPRESSO—the next generation planet hunter

Related Stories

First light for future black hole probe

January 13, 2016

Zooming in on black holes is the main mission for the newly installed instrument GRAVITY at ESO's Very Large Telescope in Chile. During its first observations, GRAVITY successfully combined starlight using all four Auxiliary ...

MATISSE to shed light on the formation of Earth and planets

September 29, 2017

The MATISSE instrument is ready to be sent to Chile, where in the next few weeks it will be installed on the Very Large Telescope (VLT), the world's most powerful astronomical observatory. This achievement is the outcome ...

Recommended for you

APEX takes a glimpse into the heart of darkness

May 25, 2018

The 12 m radio telescope APEX in Chile has been outfitted with special equipment including broad bandwidth recorders and a stable hydrogen maser clock for performing joint interferometric observations with other telescopes ...

Ancient meteorite tells tales of Mars topography

May 24, 2018

By looking at an ancient Martian meteorite that landed in the Sahara Desert, Lawrence Livermore National Laboratory (LLNL) scientists and collaborators have determined how and when the red planet's crustal topographic and ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.