Aerospace engineers developing drone for NASA concept mission to Titan

January 10, 2018 by Chris Spallino, Pennsylvania State University
Aerospace engineers developing drone for NASA concept mission to Titan
The Dragonfly dual-quadcopter, shown here in an artist’s rendering, would land on Saturn’s moon, Titan, and then make multiple flights to explore diverse locations as it characterizes the habitability of the ocean world’s environment. Dragonfly was chosen as a finalist for NASA’s New Frontiers program. Credit: Johns Hopkins Applied Research Laboratory/Steve Gribben

Researchers from the Penn State Department of Aerospace Engineering are part of a team led by the Johns Hopkins Applied Physics Laboratory (APL) whose proposal for a revolutionary rotorcraft to investigate Saturn's largest moon, Titan, has been selected by NASA as one of two finalists for the agency's next New Frontiers mission.

Dragonfly, a drone-like multi-rotor lander, would take advantage of Titan's dense atmosphere (four times denser than Earth's atmosphere) and low gravity (one-seventh of Earth's) to fly between widely-spaced landing sites on Titan's surface. At each landing site, Dragonfly would employ a suite of science instruments to investigate Titan's organic chemistry and habitability; monitor atmospheric and surface conditions; image landforms to investigate geological processes; and perform seismic studies.

The Penn State research team, led by Associate Professor Jack Langelaan and including Associate Professor Sven Schmitz and Assistant Professor Jose Palacios, is responsible for five areas of the concept development: rotor design and analysis, rotorcraft flight-control-law development, scaled rotorcraft testbed development, ground testing support, and flight performance assessment. All three professors are part of the Penn State Vertical Lift Research Center of Excellence, one of three national research centers dedicated to rotary-wing and vertical lift research.

"We are tremendously excited and proud to be a part of the Dragonfly team," said Langelaan. "Titan's environment is ideal for flying, and the mobility of a flight vehicle will give planetary scientists access to a broad area of Titan, letting us see variations in geology, surface and subsurface geochemistry and atmospheric conditions."

The Penn State team has already built a half-scale engineering test vehicle and has conducted several flight tests. This vehicle is designed to be easily reconfigurable and will be used to develop and test flight control algorithms and examine the effects of vehicle design changes on flight performance.

Dragonfly's dual quadcopter (four pairs of stacked rotors) configuration provides excellent control of the vehicle, as well as redundancy—the vehicle can fly even if some rotors fail. Since solar power is unavailable because of Titan's distance from the sun and its dense, hazy atmosphere, Dragonfly would use a Multi-Mission Radioisotope Thermoelectric Generator (MMRTG), like the Curiosity rover on Mars, to power its systems. The MMRTG would recharge a flight battery during Titan's night, and allow Dragonfly to fly tens of miles on each charge.

"We're using technologies developed for drones that fly here on Earth and modifying them so we can enable science missions on different planets. That's about as cool as it gets!" said Langelaan. "We are also using computational techniques that are being developed to help design wind turbine farms to model Titan's atmosphere: This will help us develop and test the control systems. And we are also developing and testing methods to protect the vehicle from Titan's cold environment."

The two mission finalists—the APL-led Dragonfly, and the Comet Astrobiology Exploration Sample Return (CAESAR) led by Cornell University and NASA Goddard Space Flight Center—will receive funding in 2018 to further develop and mature their concepts. NASA plans to select one of these investigations in the spring of 2019 to continue on to subsequent mission phases.

If selected, Dragonfly would have a planned mission launch in the mid-2020s with a target landing in 2034. The mission on Titan would last more than two and a half years.

The selected mission will be the fourth in NASA's New Frontiers portfolio, a series of principal investigator-led planetary science investigations that fall under a development cost cap of approximately $850 million.

Explore further: APL proposes Dragonfly mission to explore potential habitable sites on Saturn's largest moon

Related Stories

Titan ripe for drone invasion

May 5, 2017

With its dense and hydrocarbon-rich atmosphere, Titan has been a subject of interest for many decades. And with the success of the Cassini-Huygens mission, which began exploring Saturn and its system of moons back in 2004, ...

NASA sees Titan's potential for studying prebiotic chemistry

June 19, 2014

( —NASA is proposing a mission study to open up the mysteries of Titan, the largest moon of Saturn. The reason is compelling enough. Titan would serve as a vast reservoir of information about one of the most earth-like ...

Sailing the Titan seas

May 6, 2011

( -- The Johns Hopkins University Applied Physics Laboratory (APL) in Laurel, Md., is managing a project to explore the organic seas of Saturn's moon Titan, one of three proposals selected by NASA this week as ...

Recommended for you

Matter waves and quantum splinters

March 25, 2019

Physicists in the United States, Austria and Brazil have shown that shaking ultracold Bose-Einstein condensates (BECs) can cause them to either divide into uniform segments or shatter into unpredictable splinters, depending ...

Study suggests trees are crucial to the future of our cities

March 25, 2019

The shade of a single tree can provide welcome relief from the hot summer sun. But when that single tree is part of a small forest, it creates a profound cooling effect. According to a study published today in the Proceedings ...

How tree diversity regulates invading forest pests

March 25, 2019

A national-scale study of U.S. forests found strong relationships between the diversity of native tree species and the number of nonnative pests that pose economic and ecological threats to the nation's forests.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.