Single-photon detector can count to four

December 15, 2017 by Ken Kingery, Duke University
The image depicts three photons passing through a superconducting nanowire, causing the nanowire to heat up and disrupting the super-current. Credit: Duke University

Engineers have shown that a widely used method of detecting single photons can also count the presence of at least four photons at a time. The researchers say this discovery will unlock new capabilities in physics labs working in quantum information science around the world, while providing easier paths to developing quantum-based technologies.

The study was a collaboration between Duke University, the Ohio State University and industry partner Quantum Opus, and appeared online on December 14 in the journal Optica.

"Experts in the field were trying to do this more than a decade ago, but their back-of-the-envelope calculations concluded it would be impossible," said Daniel Gauthier, a professor of physics at Ohio State who was formerly the chair of physics at Duke. "They went on to do different things and never revisited it. They had it locked in their mind that it wasn't possible and that it wasn't worth spending time on."

"When we presented our data, world experts were just blown away," continued Jungsang Kim, professor of electrical and computer engineering at Duke. "It's neat having a group like ours that got started a bit later decide to try something because we didn't have any blinders on."

The discovery deals with a new method for using a detector called a superconducting nanowire single-photon detector (SNSPD).

At the heart of the detector is a superconducting filament. A superconductor is a special material that can carry an electric current forever with zero losses at low temperatures. But just like a normal piece of copper wire, a superconductor can only carry so much electricity at once.

A SNSPD works by charging a looped segment of superconducting wire with an electric current close to its maximum limit. When a photon passes by, it causes that maximum limit in a small portion of the wire to drop, creating a brief loss of superconductivity. That loss, in turn, causes an to mark the presence of the photon.

In the new setup, the researchers pay special attention to the specific shape of the initial spike in the electrical signal, and show that they can get enough detail to correctly count at least four photons traveling together in a packet.

"Photon-number-resolution is very useful for a lot of quantum information/communication and quantum optics experiments, but it's not an easy task," said Clinton Cahall, an electrical engineering doctoral student at Duke and first author of the paper. "None of the commercial options are based on superconductors, which provide the best performance. And while other laboratories have built superconducting detectors with this ability, they're rare and lack the ease of our setup as well as its sensitivity in important areas such as counting speed or timing resolution."

For other labs to make use of the discovery, all they would need is a specific type of amplifier for boosting the SNSPD's tiny electrical signal. The amplifier must work at the same as the SNSPD—minus 452 degrees Fahrenheit—to reduce background noise. It also must have wide bandwidth to avoid distorting the signal. Such amplifiers are already commercially available and many labs have them.

The results will allow researchers around the world working in quantum mechanics to immediately gain new abilities with their existing equipment. As one example, the Duke-Ohio State group also recently reported how using the timing of incoming photons in addition to their quantum states could greatly increase the speed of encryption techniques.

The team is now working to optimize their setup to see just how far they can stretch its abilities. They believe with the right electronics and a bit of practice, they could count 10 or even 20 photons at a time. The group has also filed for a patent to create off-the-shelf devices based on their method.

Explore further: Researchers develop practical superconducting nanowire single-photon detector with record detection efficiency

More information: Clinton Cahall et al, Multi-photon detection using a conventional superconducting nanowire single-photon detector, Optica (2017). DOI: 10.1364/OPTICA.4.001534

Related Stories

Graphene single photon detectors

September 6, 2017

Considerable interest in new single-photon detector technologies has been scaling in this past decade. Nowadays, quantum optics and quantum information applications are, among others, one of the main precursors for the accelerated ...

High-speed quantum memory for photons

September 8, 2017

Physicists from the University of Basel have developed a memory that can store photons. These quantum particles travel at the speed of light and are thus suitable for high-speed data transfer. The researchers were able to ...

Hi-fi single photons

October 4, 2012

Many quantum technologies—such as cryptography, quantum computing and quantum networks—hinge on the use of single photons. While she was at the Kastler Brossel Laboratory (affiliated with the Pierre and Marie Curie University, ...

Recommended for you

Compelling evidence for small drops of perfect fluid

December 10, 2018

Nuclear physicists analyzing data from the PHENIX detector at the Relativistic Heavy Ion Collider (RHIC)—a U.S. Department of Energy (DOE) Office of Science user facility for nuclear physics research at Brookhaven National ...

Supercomputers without waste heat

December 10, 2018

Generally speaking, magnetism and the lossless flow of electrical current ("superconductivity") are competing phenomena that cannot coexist in the same sample. However, for building supercomputers, synergetically combining ...

Engineers invent groundbreaking spin-based memory device

December 7, 2018

A team of international researchers led by engineers from the National University of Singapore (NUS) have invented a new magnetic device to manipulate digital information 20 times more efficiently and with 10 times more stability ...

Multichannel vectorial holographic display and encryption

December 7, 2018

Holography is a powerful tool that can reconstruct wavefronts of light and combine the fundamental wave properties of amplitude, phase, polarization, wave vector and frequency. Smart multiplexing techniques (multiple signal ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.