For the first time scientists have directly observed living bacteria in polar ice and snow

December 20, 2017, University of York
The research team positioned themselves away from polar wildlife to limit contamination, but one persistently curious character meant a testing site had to be abandoned Credit: James Chong

For the first time scientists have directly observed living bacteria in polar ice and snow - an environment once considered sterile. The new evidence has the potential to alter perceptions about which planets in the universe could sustain life and may mean that humans are having an even greater impact on levels of CO2 in the Earth's atmosphere than accepted evidence from climate history studies of ice cores suggests.

Gases captured and sealed in snow as it compresses into ice can provide researchers with snapshots of the Earth's atmosphere going back hundreds of thousands of years. Climate scientists use ice core samples to look at prehistoric levels of CO2 in the atmosphere so they can be compared with current levels in an industrial age.

This analysis of ice cores relies on the assumption that there is limited biological activity altering the environment in the snow during its transition into ice. Research reported today in the Journal of the Royal Society Interface, which has directly observed in Antarctic and Arctic snow, has revealed that the composition of these small samples of gas trapped in the ice may have been affected by that remain active in snow while it is being compressed into ice - a process that can last decades.

Lead author of the research Dr Kelly Redeker from the Department of Biology at the University of York said "As microbial activity and its influence on its local environment has never been taken into account when looking at ice-core gas samples it could provide a moderate source of error in climate history interpretations. Respiration by bacteria may have slightly increased levels of CO2 in pockets of air trapped within caps meaning that before human activity CO2 levels may have been even lower than previously thought".

"In addition, the fact that we have observed metabolically active bacteria in the most pristine ice and snow is a sign of life proliferating in environments where you wouldn't expect it to exist. This suggests we may be able to broaden our horizons when it comes to thinking about which planets are capable of sustaining life," Redeker added.

Research conducted in laboratories has previously shown that bacteria can stay alive at extremely cold temperatures, but this study is the first time that bacteria have been observed altering the polar snow environment in situ.

The researchers looked at snow in is natural state, and in other areas they sterilised it using UV sterilising lamps. When they compared the results the team found unexpected levels of methyl iodide - a gas known to be produced by marine bacteria - in the untouched snow.

Cutting-edge techniques enabled the researchers to detect the presence of gases even at part-per-trillion levels, one million times less concentrated than atmospheric CO2 concentrations.

The researchers worked on sites in the Arctic and Antarctic and took precautions to limit the impact of sunlight and wind, using tarpaulins to protect their sample sites and positioning themselves on the middle of a glacier away from soil and other forms of polar wildlife which might contaminate the .

The results of the study also suggest that life can be sustained even in remote, cold, nutrient poor environments, offering a new perspective on whether the frozen planets of the universe could support microorganisms.

With more research, astrobiologists working to identify planets in the universe with temperature levels that could allow for the presence of liquid water may be able to expand the zones they consider potentially habitable to include planets where water is found as ice.

"We know that bacteria have the potential to remain viable and metabolically active at low temperatures for hundreds to thousands of years," said Redeker. "The next step is to look further down to see if we can observe active bacteria deep in the ice caps," "Microbial metabolism directly affects trace gases in (sub) polar snowpacks" is published in the Journal of the Royal Society Interface.

Explore further: Geoscientists compare micro-organisms in the polar regions

More information: Microbial metabolism directly affects trace gases in (Sub) Polar snowpacks. Journal of the Royal Society Interface. ISSN 1742-5662 (In Press)

Related Stories

Geoscientists compare micro-organisms in the polar regions

December 13, 2017

Although the Arctic and Antarctic regions are at opposite ends of the earth, they have a similar diversity of bacteria and other microscopic life. These are the findings of an international team of researchers headed by the ...

Salty snow could affect air pollution in the Arctic

October 12, 2016

In pictures, the Arctic appears pristine and timeless with its barren lands and icy landscape. In reality, the area is rapidly changing. Scientists are working to understand the chemistry behind these changes to better predict ...

Santa's workshop could be on snowy moon

December 19, 2017

Santa's winter workshop might be in space, as University of Warwick researchers are exploring whether snowy moons over a billion kilometres away from Earth are potentially habitable.

Living on thin air—microbe mystery solved

December 6, 2017

UNSW-Sydney led scientists have discovered that microbes in Antarctica have a previously unknown ability to scavenge hydrogen, carbon monoxide and carbon dioxide from the air to stay alive in the extreme conditions.

There could be snow on Mars – here's how that's possible

August 22, 2017

Given that there are ambitious plans to colonise Mars in the near future, it is surprising how much we still have to learn about what it would be like to actually live on the planet. Take the weather, for instance. We know ...

Recommended for you

Why don't turtles still have tail spikes?

January 17, 2018

We're all familiar with those awesome armored giants of the Jurassic and Cretaceous periods - Stegosaurus and Ankylosaurus - and their amazing, weaponized tails. But why aren't similar weaponized tails found in animals living ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.