Study finds new way to clean up radioactive sites, protect radiotherapy patients, astronauts

December 21, 2017, Uniformed Services University of the Health Sciences

A new discovery by scientists could aid efforts to clean up radioactive waste sites, and could also help protect military personnel, cancer patients, and astronauts.

According to a collaborative study, led by researchers at the Uniformed Services University of the Health Sciences, published Dec. 20 in PLOS One, "Microbial cells can cooperate to resist high-level chronic ionizing radiation," the team examined growth characteristics of under high-level continuous gamma radiation. They found radiation-sensitive bacteria, E. coli (Escherichi coli), when mixed with radiation-resistant bacteria, Deinococcus radiodurans, can survive high doses of chronic ionizing radiation.

These findings suggest the Deinococcus bacteria (and also some fungi)—which express high concentrations of antioxidants—could be used as a natural radioprotective probiotic to protect microbes in the intestines of radio- and chemotherapy patients. These unexpected findings also suggest a new tool that could help protect and astronauts who experience gastrointestinal side effects from high levels of chronic ionizing radiation.

In 2004, it was discovered that radiation-sensitive bacteria were living alongside extremely radiation-resistant bacteria underneath a leaking Cold War radioactive tank holding leftovers from the Manhattan Project. The team of scientists at USU sought to better understand this mystery—why it is that, in radioactive waste sites, radiation-sensitive bacteria can survive where only extremely radiation-resistant bacteria usually grow.

Now, with this better understanding of the characteristics of the Deinococcus bacteria, the researchers believe that they could help expedite the clean-up of Cold War radioactive wastes by harnessing the capabilities of other more sensitive microbes.

"Importantly, this study also shows that many yeasts can grow as well as Deinococcus under high-level chronic gamma radiation. These microbes have shown us that cells deal with radiation in the form of a big blast in a very different way from in the form of long exposures—say, following a nuclear power accident, such as Fukushima," according to USU professor Dr. Michael J. Daly, who led the study.

Explore further: Study of what makes cells resistant to radiation could improve cancer treatments

More information: Igor Shuryak et al. Microbial cells can cooperate to resist high-level chronic ionizing radiation, PLOS ONE (2017). DOI: 10.1371/journal.pone.0189261

Related Stories

Luminous bacteria will help to measure radioactivity

May 22, 2017

In a new study, scientists asked the following questions, which are important in the field of radiobiology: What are the effects of low-dose gamma radiation on living creatures? What are the differences between gamma, alpha ...

Recommended for you

To repair DNA damage, plants need good contractors

December 13, 2018

When a building is damaged, a general contractor often oversees various subcontractors—framers, electricians, plumbers and drywall hangers—to ensure repairs are done in the correct order and on time.

Plants' defense against insects is a bouquet

December 13, 2018

Michigan State University scholar Andrea Glassmire and her colleagues have revealed how the mixture of chemical weapons deployed by plants keeps marauding insects off base better than a one-note defense. This insight goes ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.