Microcavity-engineered plasmonic resonances for strong light-matter interaction

December 6, 2017
Microcavity-engineered plasmonic resonances for strong light-matter interaction
Figure 1. Left. A quantum emitter interacting with a metallic nanostructure in the vacuum. Right. A quantum emitter interacting with a microcavity-engineered metallic nanostructure. Credit: Peking University

Achieving strong light-matter interaction at the quantum level has always been a central task in quantum physics since the emergence of quantum information and quantum control. However, the scale mismatch between the quantum emitters (nanometers) and photons (micrometers) makes the task challenging. Metallic nanostructures resolve the mismatch by squeezing the light into nanoscale volume, but their severe dissipations make quantum controls unlikely. Now, a group led by Xiao Yun-Feng at Peking University (China) has theoretically demonstrated that the strong light-matter interaction at quantum level can be achieved using microcavity-engineered metallic nanostructures. This result has been published in a recent issue of Physical Review Letters.

Strong coupling is fundamental to implementing quantum gates in quantum computers and also crucial to increasing the signal-to-noise ratio in sensing applications. To realize strong coupling, the coherent interaction strength should exceed the system dissipation rates. Although the metallic nanostructures provide high interaction rate, the dissipations intrinsic to metals are usually even stronger. As a result, in metallic nanostructures has only been realized in extreme experimental conditions.

In this work, the researchers report that the dissipation can be suppressed by engineering the electromagnetic environment of metallic nanostructures. An optical microcavity provides a non-trivial electromagnetic environment which substantially broadens the radiative output channel of the metallic nanostructures, guiding the energy out from the dissipative region and thus suppressing the dissipations. With such an interface, energy and information can be guided out from the single quantum emitter at both high speed and high efficiency.

"Theoretical model shows that microcavities-engineered metallic structures can boost the radiation efficiency of a quantum emitter by 40 times and the radiation output rate by 50 times, compared to metallic nanostructures in the vacuum", said Peng Pai, who was an undergraduate at Peking University and now is a Ph.D. student at Massachusetts Institute of Technology. Importantly, reversible energy exchange between the photon and the quantum emitter at THz rate can be achieved, manifesting the strong light-matter interaction at the .

"Our approach to reducing the dissipations is not restricted by the scale, shape, and material of the metallic nanostructures," said Professor Xiao. "In combination with previous approaches, it is promising to build the state-of-the-art light-matter interface at nanoscale using microcavity-engineered , providing a new platform for the study of quantum plasmonics, processing, precise sensing and advanced spectroscopy."

Explore further: Quantum systems correct themselves

More information: Pai Peng et al. Enhancing Coherent Light-Matter Interactions through Microcavity-Engineered Plasmonic Resonances, Physical Review Letters (2017). DOI: 10.1103/PhysRevLett.119.233901

Related Stories

Quantum systems correct themselves

November 28, 2017

Quantum devices allow us to accomplish computing and sensing tasks that go beyond the capabilities of their classical counterparts. However, protecting quantum information from being corrupted by errors is difficult.

A new kind of quantum computer

November 6, 2017

Quantum mechanics incorporates some very non-intuitive properties of matter. Quantum superposition, for example, allows an atom to be simultaneously in two different states with its spin axis pointed both up and down, or ...

New design surpasses the coherent interaction limit

June 10, 2014

Coherent light-matter interaction at the single photon level is a long-standing goal for quantum operations. To reach such strong coupling regime, previous studies mainly focus on improving the quality (Q) factor and reducing ...

Bridging the gap between the quantum and classical worlds

August 2, 2016

In the quantum world, physicists study the tiny particles that make up our classical world - neutrons, electrons, photons - either one at a time or in small numbers because the behaviour of the particles is completely different ...

Recommended for you

Electromagnetic water cloak eliminates drag and wake

December 11, 2017

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while simultaneously helping it avoid detection.

Three kinds of information from a single X-ray measurement

December 11, 2017

Whatever the size of mobile phones or computers are, the way in which such electronic devices operate relies on the interactions between materials. For this reason, engineers as well as researchers need to know exactly how ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.