Mastering tailored design of aluminum nanomaterials

December 7, 2017
Mastering tailored design of aluminum nanomaterials
Scanning electron microscopy images of gibbsite synthesized at different pH values: (a) 1; (b) 3; (c) 5; (d) 10; (e) 12; and (f) 13.5. Credit: American Chemical Society

Whether for energy applications or nuclear waste management, industrial processing of aluminum requires understanding its behavior in highly alkaline solutions. Processing slurries and precipitates (typically gibbsite, α-Al(OH)3) from these solutions is aided by controlling the shape of tiny particles that are produced. Researchers at the IDREAM Energy Frontier Research Center, funded by DOE's Office of Science, Basic Energy Sciences, developed a synthesis route. The scientists devised the route based on simple, rational design principles. With it, the team produced highly uniform gibbsite nanoplates with optimal yield.

Gibbsite is an important ore of . The ore is processed on an industrial scale in applications ranging from transportation to transmission to high-level radioactive waste treatment. Typical processing is energy intensive. The team's work provides a methodology that is cost-effective and more environmentally friendly than other approaches.

Gibbsite (α-Al(OH)3) is an important natural and industrial material that is used in a wide variety of energy applications, and is a significant component of some of the high-level nuclear waste stored in large quantities at the Hanford Site, Washington, U.S.A., and at the Savannah River Site, South Carolina, U.S.A. Industrial-scale processing of these materials requires an understanding of their behavior in highly alkaline solutions (often called Bayer liquors); processing of slurries and precipitates from these liquors is facilitated by controlling the nanoparticulate gibbsite morphology.

The IDREAM team has developed a hydrothermal inorganic synthesis route that is based on simple, rational design principles, and leads to highly uniform hexagonal nanoplates within a basal plane diameter range of 200 to 400 nm. Synchrotron-based x-ray absorption spectroscopy for both aluminum and oxygen reveals that the aluminum coordination in the ideal material is a distorted octahedral geometry with oxygen atoms at two, discrete distances from the central aluminum atom.

Explore further: Scientists created nanopowders for the synthesis of new aluminum alloys

More information: Xin Zhang et al. Fast Synthesis of Gibbsite Nanoplates and Process Optimization using Box-Behnken Experimental Design, Crystal Growth & Design (2017). DOI: 10.1021/acs.cgd.7b01400

Related Stories

Towards eco-friendly industrial-scale hydrogen production

June 13, 2016

What if industrial waste water could become fuel? With affordable, long-lasting catalysts, water could be split to produce hydrogen that could be used to power fuel cells or combustion engines. By conducting complex simulations, ...

Semiconductors with an aligned interface

November 13, 2017

The electronic characteristics of an interface between two wide bandgap semiconductors are determined by researchers at KAUST: an insight that will help improve the efficiency of light-emitting and high-power electronic devices.

Nuke waste debate: Turn it into glass or encase in cement?

May 4, 2017

Congress should consider authorizing the U.S. Department of Energy to study encasing much of the nuclear waste at the nation's largest waste repository in a cement-like mixture instead of turning it into glass logs, according ...

Recommended for you

Researchers discover new way to power electrical devices

December 11, 2017

A team of University of Alberta engineers developed a new way to produce electrical power that can charge handheld devices or sensors that monitor anything from pipelines to medical implants.The discovery sets a new world ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.