The unbelievable speed of electron emission from an atom

November 13, 2017

In a unique experiment, researchers have clocked how long it takes for an electron to be emitted from an atom. The result is 0.000 000 000 000 000 02 seconds, or 20 billionths of a billionth of a second. The researchers' stopwatch consists of extremely short laser pulses. Hopefully, the results will help to provide new insights into some of the most fundamental processes in nature.

Researchers from Lund, Stockholm and Gothenburg in Sweden have documented the incredibly brief moment when two electrons in a neon atom are emitted.

"When light hits the atom, the electrons absorb the energy from the light. An instant later the electrons are freed from the binding powers of the atom. This phenomenon, called photoionization, is one of the most fundamental processes of physics and was first theoretically mapped by Albert Einstein, who was awarded the Nobel Prize in Physics in 1921 for this particular discovery", says Marcus Isinger, doctoral student in attophysics at Lund University in Sweden.

Photoionization is about the interaction between light and matter. This interaction is fundamental to photosynthesis and life on Earth – and enables to study .

"When atoms and molecules undergo chemical reactions, the electrons are the ones that do the heavy lifting. They regroup and move to allow new bonds between molecules to be created or destroyed. Following such a process in real time is a bit of a holy grail within science. We have now come one step closer", says Marcus Isinger.

Although neon is a relatively simple atom with a total of ten electrons, the experiment required both extremely careful timing, with a level of accuracy within one billionth of a billionth of a second (known as an attosecond), and extremely sensitive electron detection that could distinguish between electrons whose speed differed only by around one thousandth of an attojoule (a millionth of an electron's stationary energy).

The finding confirms several years of theoretical work and shows that attophysics is ready to take on more .

"Being able to observe how molecules exchange electrons during a chemical reaction opens the door to completely new types of studies of a number of fundamental biological and chemical processes."

The new measuring technique circumvents the limitation formulated by the father of quantum physics, Werner Heisenberg, in 1927. According to "Heisenberg's uncertainty principle", it is not possible to determine the position and the speed of an electron at the same instant. However, now, the Swedish researchers have shown that it can, in fact, be done: through superposition (i.e. interference) of two short pulses of light with different wavelengths.

Explore further: Researchers get first look at electrons escaping atoms

More information: M. Isinger et al. Photoionization in the time and frequency domain, Science (2017). DOI: 10.1126/science.aao7043

Related Stories

Researchers get first look at electrons escaping atoms

October 2, 2017

Researchers have—for just a fraction of a second—glimpsed an electron's-eye view of the world. That is, they have succeeded for the first time in tracking an electron leaving the vicinity of an atom as the atom absorbs ...

Physicists publish new findings on electron emission

September 21, 2017

Even more than 100 years after Einstein's explanation of photoemission the process of electron emission from a solid material upon illumination with light still poses challenging surprises. In the report now published in ...

Hollow atoms: The consequences of an underestimated effect

September 11, 2017

The "hollow atoms", which are being produced in the labs of TU Wien (Vienna) are quite exotic objects. Their electrons are in a state of extremely high energy (so called Rydberg states), but when they are shot through another ...

Electrons used to control ultrashort laser pulses

March 21, 2017

We may soon get better insight into the microcosm and the world of electrons. Researchers at Lund University and Louisiana State University have developed a tool that makes it possible to control extreme UV light - light ...

Recommended for you

How the Earth stops high-energy neutrinos in their tracks

November 22, 2017

Neutrinos are abundant subatomic particles that are famous for passing through anything and everything, only very rarely interacting with matter. About 100 trillion neutrinos pass through your body every second. Now, scientists ...

Quantum internet goes hybrid

November 22, 2017

In a recent study published in Nature, ICFO researchers led by ICREA Prof. Hugues de Riedmatten report an elementary "hybrid" quantum network link and demonstrate photonic quantum communication between two distinct quantum ...

Enhancing the quantum sensing capabilities of diamond

November 22, 2017

Researchers have discovered that dense ensembles of quantum spins can be created in diamond with high resolution using an electron microscopes, paving the way for enhanced sensors and resources for quantum technologies.

2 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

Whydening Gyre
not rated yet Nov 13, 2017
Wouldn't this have been easier with a hydrogen atom?
Graeme
not rated yet Nov 21, 2017
Whydening Gyre

It is much harder to get two electrons out of a hydrogen atom! Since it only has one electron. You could have used a hydride ion, H-, but they would be much harder to be pure, than a noble gas.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.