Can environmental toxins disrupt the biological 'clock'?

November 3, 2017, Rensselaer Polytechnic Institute
Adaptation to salt disrupts Circadian function in Daphnia zooplankton. Credit: Rensselaer

Can environmental toxins disrupt circadian rhythms - the biological "clock" whose disturbance is linked to chronic inflammation and a host of human disorders? Research showing a link between circadian disruption and plankton that have adapted to road salt pollution puts the question squarely on the table.

"This research shows that exposure to may be depressing the function of our circadian , the disruption of which is linked to increased rates of cancer, diabetes, obesity, heart disease, and depression," said Jennifer Hurley, an assistant professor of biological sciences, a member of the Center for Biotechnology and Interdisciplinary Studies (CBIS) at Rensselaer Polytechnic Institute, and senior author on this research. "This is the first time anyone has shown this happening at the level of the core clock, which we had considered to be heavily buffered against these types of environmental effects."

The research builds on recent findings from the Jefferson Project at Lake George, showing that a common species of zooplankton, Daphnia pulex, can evolve tolerance to moderate levels of in as little as two and a half months. That research produced five populations of Daphnia adapted to concentrations ranging from the current concentration of 15 milligrams per liter of chloride in Lake George, to concentrations of 1,000 milligrams per liter as found in highly contaminated lakes in North America.

"Plankton, which are key consumers of algae and a food source for many fish, may be making a monumental tradeoff to tolerate increased road salt," said Rick Relyea, Jefferson Project director, CBIS member, and co-author of the study. "The circadian rhythm guides these animals through a daily migration, to deep waters during the day to hide from predators and shallow waters at night to feed. Disrupting that rhythm could affect the entire lake ecosystem."

Hurley said adaptation to salt is likely affecting Daphnia at the epigenetic level, a heritable change in gene levels rather than genetic code. The research has wide applicability in multiple fields beyond human health and is a demonstration of cutting-edge, interdisciplinary research resulting from cross-collaboration between CBIS and the Jefferson Project.

To explore whether salt affects the circadian rhythm of Daphnia, researchers first established that the plankton is governed by a core set of clock-control genes that anticipates the day/night cycle. Clock control genes promote and suppress gene transcription, creating daily oscillations in the levels of enzymes and hormones to affect cell function, division, and growth, as well as physiological parameters such as body temperature and immune responses. The Daphnia genome includes the PERIOD (PER) gene, a set of genes nearly identical to the well-established core clock of the fruit fly (Drosophila melanogaster).

Kayla Coldsnow, a Rensselaer doctoral student and the first author on the study, tracked the expression of the mRNA of PER in Daphnia exposed to naturally low salt levels and constant dark conditions. Despite these constant environmental conditions, Daphnia PER mRNA levels oscillated with a 24-hour rhythm, a clear indication of a functional circadian clock. Her results, in combination with existing research, shows that PER "clock genes" are active in Daphnia.

To test whether adaptation to high-salt environments affects this functional circadian clock, Coldsnow then performed a similar experiment with the five populations of Daphnia produced during her earlier research. Her data showed that PER mRNA rhythms deteriorated with the adaptation to increasing salt concentrations.

"What we see is a graded, measured response in this organism; the higher the level of salt to which the Daphnia are adapted, the more it suppresses the expression of its ," said Hurley. "The population adapted to naturally low salt levels exhibits a beautiful, healthy oscillation in PER mRNA expression, but the population adapted to high salt levels have completely lost their ability to oscillate this mRNA expression."

Hurley said the findings open a new door in circadian research.

"The implications are substantial," Hurley said. "You've exposed Daphnia to an environmental toxin, and its clock was suppressed, probably through epigenetic mechanisms. The clock and biology of Daphnia is very similar to the clock and the biology both in our brains and most organisms. Is it possible that we can see epigenetic changes in the human brain because of exposure to environmental toxins?

Explore further: Zooplankton rapidly evolve tolerance to road salt

More information: Kayla D. Coldsnow et al, Evolution to environmental contamination ablates the circadian clock of an aquatic sentinel species, Ecology and Evolution (2017). DOI: 10.1002/ece3.3490

Related Stories

Zooplankton rapidly evolve tolerance to road salt

January 6, 2017

A common species of zooplankton—the smallest animals in the freshwater food web—can evolve genetic tolerance to moderate levels of road salt in as little as two and a half months, according to new research published online ...

Chronic drinking can disrupt circadian rhythms

August 24, 2010

Circadian rhythmicity is regulated by circadian clock genes, and animal studies have shown that chronic drinking can alter expressions in these genes. A new study has found that significantly lower levels of messenger ribonucleic ...

Active 24/7 and doing great

June 21, 2017

Circadian clocks control the day-night cycle of many living beings. But what do the pacemakers do in animals whose activities do not follow this pattern? Scientists from the University of Würzburg have now looked into this ...

Chrono, the last piece of the circadian clock puzzle?

April 15, 2014

All organisms, from mammals to fungi, have daily cycles controlled by a tightly regulated internal clock, called the circadian clock. The whole-body circadian clock, influenced by the exposure to light, dictates the wake-sleep ...

Recommended for you

A new DNA editing toolkit for the alga Nannochloropsis

May 22, 2018

Eric Poliner and a team of MSU scientists in the Farre and Benning labs have released a new genetic engineering toolkit for the alga Nannochloropsis. The alga is of interest for the production of biofuels and other oil-based ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.