Active sieving could improve dialysis and water purification filters

October 17, 2017, American Institute of Physics
To separate molecules usually a "colander" type of filter is used (Left side). A new type of filter, where the holes of the sieve can be activated is explored. (Right side) Thanks to an external power input, the holes of the sieve (here doors) can be opened and closed. This power input plays the role of a crazy Maxwell Demon -- similar to a bouncer. Credit: Sophie Marbach

Physicists from École Normale Supérieure and Paris Science and Letters University in France have proven theoretically that active sieving, as opposed to its passive counterpart, can improve the separation abilities of filtration systems. These new views on how active sieving could improve systems such as those used in water purification and dialysis were reported this week in The Journal of Chemical Physics. Active sieving also has the potential to filter molecules based on movement dynamics, opening up a whole new avenue in the field of membrane science based on the ability to tune osmotic pressure.

Sieves, from kitchen colanders to complex dialysis machines, all have "passive" pores to filter out unwanted molecules from the desired product. While straining spaghetti is a simple example, the filtering of specific molecules on the nanoscale level for biomedical applications and for production of clean water is a complex and costly process. Any improvements to this process are the subject of much investigation.

Active sieving replaces the passive holes in a sieve with doorlike openings that open and close according to external commands. These active pores can precisely discriminate between molecules and be switched on and off depending on the exact sieving conditions. Therefore, active sieving gives a level of dynamic control that we do not possess in current .

The researchers investigated a few types of external commands to control the doors of a sieve's pores, including a mechanical 'shake' and an electrical signal to change the charge guarding the doorways.

"We put together a general framework to describe holes in the membrane that have some kind of dynamic aspect to them that you could externally modify," said Sophie Marbach at the École Normale Supérieure. "It's an exciting proposition because it is a new concept and we don't know what it is going to lead to."

One of the possibilities is that molecules could be actively sorted, i.e., sort the fast-moving molecules separately from the slow based on their dynamic properties. This would be helpful in making fine distinctions between very similar molecules and is already known to occur in nature. For instance, the KscA , a potassium channel found in soil bacteria, is thought to select potassium using its speed to distinguish it from the very similar sized and charged sodium.

The "osmotic pressure" of a filter is critical for to move through the nanopores, but actively changing pores alters the osmotic pressure and changes the status quo. This suggests that the tuning of the could be harnessed to further evolve sieving techniques.

"Because the theoretical framework is at an early stage it is not obvious to know the consequences of what will happen," Marbach said. "There are a lot of theoretical questions lingering around."

Explore further: Graphene sieve turns seawater into drinking water

More information: "Active sieving across driven nanopores for tunable selectivity," Journal of Chemical Physics (2017). DOI: 10.1063/1.4997993

Related Stories

Graphene sieve turns seawater into drinking water

April 3, 2017

Graphene-oxide membranes have attracted considerable attention as promising candidates for new filtration technologies. Now the much sought-after development of making membranes capable of sieving common salts has been achieved.

Scientists produce dialysis membrane made from graphene

June 29, 2017

Dialysis, in the most general sense, is the process by which molecules filter out of one solution, by diffusing through a membrane, into a more dilute solution. Outside of hemodialysis, which removes waste from blood, scientists ...

Filtering molecules from the water or air with nanomembranes

September 14, 2017

Free-standing carbon membranes that are a millionth of a millimetre thin: these are a special research field of Professor Dr. Armin Gölzhäuser from Bielefeld University and his research group. The nanomembranes can serve ...

Filter may be a match for fracking water

September 25, 2017

A new filter produced by Rice University scientists has proven able to remove more than 90 percent of hydrocarbons, bacteria and particulates from contaminated water produced by hydraulic fracturing (fracking) operations ...

How shuttling proteins operate nuclear pores

September 4, 2017

Nuclear pore complexes are tiny channels where the exchange of substances between the cell nucleus and the cytoplasm takes place. Scientists at the University of Basel report on startling new research that might overturn ...

Recommended for you


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.