Quantum dots visualize tiny vibrational resonances

October 30, 2017, American Institute of Physics
Background: Image of a Chladni plate's mode of vibration visualized by grains of sand collected at the nodes. Left-top: Cross-sectional scanning tunneling microscopy image of an indium arsenide quantum dot. Left-bottom: Variation of quantum dot emission line frequencies as a function of time due to vibrations of the photonic crystal membrane. Right: Scanning electron micrograph of a photonic crystal membrane, displaced according to one of the vibrational modes, with red and blue representing positive and negative displacement, respectively. Credit: Sam Carter and co-authors

In the late 18th century, Ernst Chladni, a scientist and musician, discovered that the vibrations of a rigid plate could be visualized by covering it with a thin layer of sand and drawing a bow across its edge. With the bow movement, the sand bounces and shifts, collecting along the nodal lines of the vibration. Chladni's discovery of these patterns earned him the nickname, "father of acoustics." His discovery is still used in the design and construction of acoustic instruments, such as guitars and violins.

Recently, investigators have discovered a similar effect with much smaller vibrating objects excited by . When is used to drive the motion of a thin, rigid membrane, it plays the role of the bow in Chladni's original experiment and the membrane vibrates in resonance with the . The resulting patterns can be visualized through an array of quantum dots (QDs), where these tiny structures emit light at a frequency that responds to movement. The advance is reported this week in a cover article of Applied Physics Letters.

In addition to being a modern take on an old phenomenon, the new discovery could lead to the development of sensing devices as well as methods for controlling the emission characteristics of QDs. Since the light frequency emitted by the QDs is correlated with the movement of the underlying membrane, new devices for sensing motion, such as accelerometers, can be envisioned. A reverse application is also possible since the motion of the underlying membrane can be used to control the frequency of light emitted by the QDs.

The tiny devices in the work reported here consist of a 180-nanometer thick slice of semiconductor, suspended like a trampoline above a solid substrate. An array of QDs, analogous to the sand in the acoustic example, are embedded in the slice, whose thickness is less than one-tenth of one percent that of a human hair.

A second probe laser is used to visualize the resulting resonances. The QDs absorb the probe light and emit a second light pulse in response, which is picked up by a detector and routed to a display. The resulting patterns are remarkably like those visualized in Chladni's original acoustic experiment, even though the new is driven entirely by light.

One possible application of this discovery, according to Sam Carter of the Naval Research Lab who is one of the paper's authors, is to sense subtle forces produced by nearby dense objects. "Concealed nuclear materials could be detectable," he said, "since dense materials like lead are used to shield the devices."

The highly dense shielding needed for causes small gravitational anomalies and tiny movements that might be detectable by a device based on the principle discovered here. The investigators plan to continue their work by looking at electronic spin. It is hoped that techniques to measure the effect on spin will increase the sensitivity of the devices.

Explore further: Breakthrough in moving small objects using acoustics

More information: "Sensing flexural motion of a photonic crystal membrane with InGaAs quantum dots," Applied Physics Letters (2017). DOI: 10.1063/1.4995069

Related Stories

Breakthrough in moving small objects using acoustics

September 9, 2016

Researchers of Aalto University have made a breakthrough in controlling the motion of multiple objects on a vibrating plate with a single acoustic source. By playing carefully constructed melodies, the scientists can simultaneously ...

Device for detecting subatomic-scale motion

December 16, 2016

Scientists at the National Institute of Standards and Technology (NIST) have developed a new device that measures the motion of super-tiny particles traversing distances almost unimaginably small—shorter than the diameter ...

New technique promises tunable laser devices

September 19, 2017

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a phenomenon similar to an effect observed in circular galleries, such ...

Recommended for you

Zirconium isotope a master at neutron capture

January 17, 2019

The probability that a nucleus will absorb a neutron is important to many areas of nuclear science, including the production of elements in the cosmos, reactor performance, nuclear medicine and defense applications.

Mechanism helps explain the ear's exquisite sensitivity

January 16, 2019

The human ear, like those of other mammals, is so extraordinarily sensitive that it can detect sound-wave-induced vibrations of the eardrum that move by less than the width of an atom. Now, researchers at MIT have discovered ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.