October 17, 2017

This article has been reviewed according to Science X's editorial process and policies. Editors have highlighted the following attributes while ensuring the content's credibility:

Doubling the power of the world's most intense laser

The HERCULES laser holds the Guinness World Records certificate for highest intensity focused laser, and it is about to get more powerful and intense with a $2M upgrade from the National Science Foundation. Credit: Joseph Xu, Michigan Engineering
× close
The HERCULES laser holds the Guinness World Records certificate for highest intensity focused laser, and it is about to get more powerful and intense with a $2M upgrade from the National Science Foundation. Credit: Joseph Xu, Michigan Engineering

The most intense laser in the world is about to get a power upgrade with $2 million from the National Science Foundation.

With more laser energy to focus, researchers at the University of Michigan and collaborators from around the world can make better tabletop devices that produce particle and X-ray beams for medical and national security applications—and also explore mysteries in astrophysics and the quantum realm.

The power of the HERCULES laser comes from a series of five embedded "pump" lasers that amplify ultrashort pulses of light. To upgrade the power of HERCULES from 300 trillion watts, or terawatts (TW), to 500 or even 1,000 TW, the researchers will replace the final three of those pump lasers.

If HERCULES can achieve 1,000 TW, it would once again be among the most powerful lasers in the U.S. Regardless, the bump in power will up the ante on its intensity record—currently 20 sextillion (2x1022) watts per centimeter squared. The improved HERCULES should be able to double or even triple that intensity.

A decade ago, when engineers at Michigan first built HERCULES, the commercial pump lasers the system relies on couldn't reach the ambitious 300 TW—record-breaking at the time—that the researchers had in mind. They had to build their own pump lasers. Now, driven by a demand from international projects seeking power levels north of 10,000 TW, commercial pump lasers can outstrip the homemade versions that run in HERCULES today. This new technology is what will push HERCULES to higher power and intensity than ever before.

"This upgrade enables a wide variety of different experiments," said Karl Krushelnick, U-M professor of nuclear engineering and radiological science and director of the Center for Ultrafast Optical Science, which houses HERCULES. "There are these exciting applications, and it also opens up a new regime at the very frontier of plasma physics, where quantum phenomena start to play an important role."

This is what researchers have to look forward to:

Krushelnick anticipates that the expanded capabilities of HERCULES will enable researchers at U-M who specialize in these areas to do experiments that were previously impossible. In addition, HERCULES powers experiments for researchers around the U.S. and abroad, so the upgrade will make it more valuable as a national scientific resource.

Load comments (1)