What are neutron stars?

October 16, 2017
Neutron star. Credit: NASA

Thrilled physicists and astronomers announced Monday the first-ever observation of the merger of two neutron stars, one of the most spectacularly violent phenomena in the Universe.

But what are they?

We asked Patrick Sutton, head of Cardiff University's gravitational physics department, who contributed to the discovery.

Q: What are ?

A: You can think of them as the collapsed, burnt-out cores of .

When large stars reach the end of their lives, their core will collapse, the outer layers of the star blown off. You're left with an extremely exotic object, this neutron star.

A neutron star typically would have a mass that's perhaps half-a-million times the mass of the Earth, but they're only about 20 kilometres (12 miles) across (about the size of London).

A handful of material from this star would weigh as much as Mount Everest.

They are very hot, perhaps a million degrees, they are highly radioactive, they have incredibly intense magnetic fields... They are arguably the most hostile environments in the Universe today.

Q: Why do neutron stars merge?

A: It's very common for stars... in the Universe to actually be formed in pairs by a given gas cloud.

If the stars are large enough, then at the end of their life they explode and they leave behind neutron star cores, and the neutron stars will continue orbiting each other.

As they orbit, they give off gravitational waves and the waves carry away energy and so the stars slowly fall closer and closer together.

As they get closer together they orbit faster and faster and the gravitational wave emission speeds up.

You get a runaway process where the two stars in the last few moments of their life, they'll be orbiting each other several hundred times per second, so moving at very close to the speed of light, and eventually they will merge.

Q: What happens then?

A: Because we don't understand exactly the mechanics of how these work on the interior, it's not certain what the final fate is.

If the stars are heavy enough, we're sure they will collapse to form a black hole and some of the remaining matter... will form what is called an accretion disk orbiting just around the black hole.

It may be that if the stars are light enough, that they will actually form a single, very heavy neutron star instead of a black hole. That may be stable and stay as a neutron star forever, or it may be unstable and eventually collapse into a black hole.

Explore further: A population of neutron stars can generate gravitational waves continuously

Related Stories

Neutron stars could be our GPS for deep space travel

June 30, 2017

NASA's Neutron Star Interior Composition Explorer, or NICER, is an X-ray telescope launched on a SpaceX Falcon 9 rocket in early June 2017. Installed on the International Space Station, by mid-July it will commence its scientific ...

New way to form close double black holes

June 27, 2017

A team of three Dutch astronomers from the University of Amsterdam and Leiden University found a new way to form two black holes that orbit each other for quite a while and then merge. Their publication with computer simulations ...

A black hole in a low mass X-ray binary

April 24, 2017

A globular cluster is a roughly spherical ensemble of stars (as many as several million) that are gravitationally bound together, and typically located in the outer regions of galaxies. Low mass X-ray binary stars (LMXBs) ...

Recommended for you

Traveling to the sun: Why won't Parker Solar Probe melt?

July 19, 2018

This summer, NASA's Parker Solar Probe will launch to travel closer to the Sun, deeper into the solar atmosphere, than any mission before it. If Earth was at one end of a yard-stick and the Sun on the other, Parker Solar ...

Team creates high-fidelity images of Sun's atmosphere

July 18, 2018

In 1610, Galileo redesigned the telescope and discovered Jupiter's four largest moons. Nearly 400 years later, NASA's Hubble Space Telescope used its powerful optics to look deep into space—enabling scientists to pin down ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.