New way to form close double black holes

June 27, 2017, Leiden University
Credit: ESO/M. Kornmesser/S.E. de Mink

A team of three Dutch astronomers from the University of Amsterdam and Leiden University found a new way to form two black holes that orbit each other for quite a while and then merge. Their publication with computer simulations has been accepted by the Monthly Notices of the Royal Astronomical Society.

At the beginning of June 2017, it was breaking news for the third time: two merging black holes caused a burst of gravitational waves. Astronomers, though, do not agree on how such double black holes form. One hypothesis is that two black holes form far away from each other, drift slowly towards each other and then start orbiting. The second hypothesis is that two massive stars orbit each other, explode and collapse into two black holes.

Dutch researchers Ed van den Heuvel (University of Amsterdam), Simon Portegies Zwart (Leiden University) and Selma de Mink (University of Amsterdam) now show that this second hypothesis, of two orbiting stars, is more likely than previously expected.

More often than expected

Ed van den Heuvel, who in 1972 was one of the first astronomers to study the evolution of heavy double stars, is the first author of the current article. 'If our calculations are correct, double black holes, with a combined mass of fifteen to thirty times that of the sun, arise more often than expected. In our own Milky Way, for example, according to the new calculations such a merging black hole develops once in 100,000 years. Of course, that is still rare for humans, but it's ten times more often than was thought.'

Little Green Machine

Simon Portegies Zwart, who performed the new simulations on 'his' super computer Little Green Machine: 'When the heaviest of the two stars collapses into a black hole, there is a stable situation in which the second star can survive for a long time before it forms the second black hole. In the meantime the first black hole sucks in a lot of matter from the second star, and it ejects much of it again. This mass emission causes considerable shrinking of the double star's orbit. So, when the second star collapses into a black hole, a close double star is formed of two that will fuse together later.'

Van den Heuvel: 'Until now, it was thought that binaries almost always fuse into a single big star and then form one black hole. And that only in extreme cases with double in a very wide or a very close would form a double black hole. Now, we show that the conditions need not be so extreme.'

Explore further: Study suggests dying stars give newborn black holes a swift kick

More information: E.P.J. van den Heuvel et al. Forming short-period Wolf-Rayet X-ray binaries and double black holes through stable mass transfer, Monthly Notices of the Royal Astronomical Society (2017). DOI: 10.1093/mnras/stx1430

Related Stories

Merging galaxies have enshrouded black holes

May 10, 2017

Black holes get a bad rap in popular culture for swallowing everything in their environments. In reality, stars, gas and dust can orbit black holes for long periods of time, until a major disruption pushes the material in.

Oxymoronic black hole RGG 118 provides clues to growth

August 12, 2015

Astronomers using NASA's Chandra X-ray Observatory and the 6.5-meter Clay Telescope in Chile have identified the smallest supermassive black hole ever detected in the center of a galaxy, as described in our latest press release. ...

How massive can black holes get?

August 11, 2015

Without the light pressure from nuclear fusion to hold back the mass of the star, the outer layers compress inward in an instant. The star dies, exploding violently as a supernova.

New research reveals hundreds of undiscovered black holes

September 7, 2016

New research by the University of Surrey published today in the journal Monthly Notices of the Royal Astronomical Society has shone light on a globular cluster of stars that could host several hundred black holes, a phenomenon ...

Recommended for you

Magnetized inflow accreting to center of Milky Way galaxy

August 17, 2018

Are magnetic fields an important guiding force for gas accreting to a supermassive black hole (SMBH) like the one that our Milky Way galaxy hosts? The role of magnetic fields in gas accretion is little understood, and trying ...

First science with ALMA's highest-frequency capabilities

August 17, 2018

The ALMA telescope in Chile has transformed how we see the universe, showing us otherwise invisible parts of the cosmos. This array of incredibly precise antennas studies a comparatively high-frequency sliver of radio light: ...

Another way for stellar-mass black holes to grow larger

August 17, 2018

A trio of researchers with The University of Hong Kong, Academia Sinica Institute of Astronomy and Astrophysics in Taiwan and Northwestern University in the U.S., has come up with an alternative theory to explain how some ...

Six things about Opportunity's recovery efforts

August 17, 2018

NASA's Opportunity rover has been silent since June 10, when a planet-encircling dust storm cut off solar power for the nearly-15-year-old rover. Now that scientists think the global dust storm is "decaying"—meaning more ...

Sprawling galaxy cluster found hiding in plain sight

August 16, 2018

MIT scientists have uncovered a sprawling new galaxy cluster hiding in plain sight. The cluster, which sits a mere 2.4 billion light years from Earth, is made up of hundreds of individual galaxies and surrounds an extremely ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.