Gut bacterium indirectly causes symptoms by altering fruit fly microbiome

October 19, 2017, Public Library of Science
A fruit fly gut. Credit: Tiffani Jones

CagA, a protein produced by the bacterium Helicobacter pylori, can alter the population of microbes living in the fruit fly gut, leading to disease symptoms, according to new research published in PLOS Pathogens by Tiffani Jones and Karen Guillemin of the University of Oregon.

Microbes living in the normally help keep people healthy, but disruptions to this microbial community can promote disease. Infections with specific microbial species can disrupt the gut , but it is unclear how such disruption occurs and whether it promotes disease.

In the new study, Jones and her colleagues used Drosophila fruit flies to test the effects of infection with H. pylori, which can cause gastric cancer in humans. They hypothesized that a protein associated with H. pylori called CagA disrupts the fruit fly gut microbiome and contributes to disease.

To test their hypothesis, the researchers genetically engineered fruit flies to express the CagA protein in their intestines, without being infected by H. pylori. This allowed them to disentangle the specific effects of CagA from the overall effects of H. pylori infection.

They found that CagA expression in the fruit fly gut caused excess growth of intestinal cells and promoted immune system responses that are associated with H. pylori infection. However, these symptoms did not occur in CagA-expressing flies that were raised without microbes, suggesting the importance of the gut microbiome.

Indeed, further investigation revealed that CagA expression was associated with a disrupted gut microbiome in the flies. Exposure to the CagA-expressing flies caused the same microbiome disruptions in normal flies, which was sufficient to cause the same symptoms of excess cell growth and immune response seen in the genetically altered flies.

Overall, these findings show that CagA can indirectly cause by altering the . This raises the possibility that the harmful effects of infection with H. pylori—and other microbes that may function similarly—could be mitigated by manipulating the balance of microbes in the gut.

"Our work demonstrates for the first time that a bacterial virulence factor like CagA can alter commensal microbial communities to cause disease," the author explain. "This work also reveals that commensal microbial communities may participate in the progression of H. pylori mediated ."

Explore further: High-salt diet and ulcer bug combine to increase risk of cancer

More information: Jones TA, Hernandez DZ, Wong ZC, Wandler AM, Guillemin K (2017) The bacterial virulence factor CagA induces microbial dysbiosis that contributes to excessive epithelial cell proliferation in the Drosophila gut. PLoS Pathog 13(10): e1006631. doi.org/10.1371/journal.ppat.1006631

Related Stories

What is the risk factor for gastric cancer in a Costa Rican?

January 21, 2009

A research group from Costa Rican evaluated risk factors for gastric cancer in Costa Rican regions with contrasting gastric cancer incidence rates (GCIR). They found that although a pro-inflammatory cytokine genetic profile ...

Recommended for you

How quinoa plants shed excess salt and thrive in saline soils

September 21, 2018

Barely heard of a couple of years ago, quinoa today is common on European supermarket shelves. The hardy plant thrives even in saline soils. Researchers from the University of Würzburg have now determined how the plant gets ...

Basking sharks can jump as high and as fast as great whites

September 20, 2018

A collaborative team of marine biologists has discovered that basking sharks, hundreds of which are found off the shores of Ireland, Cornwall, the Isle of Man and Scotland, can jump as fast and as high out of the water as ...

Decoding the structure of an RNA-based CRISPR system

September 20, 2018

Over the past several years, CRISPR-Cas9 has moved beyond the lab bench and into the public zeitgeist. This gene-editing tool CRISPR-Cas9 holds promise for correcting defects inside individual cells and potentially healing ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.